Pham Thanh Ha, Phan Van Tan

Main Article Content

Abstract

This study analyzed the spatio-temporal characteristics of flash droughts across seven climatic sub-regions of Vietnam using ERA5 soil moisture data at three depths (7 cm, 28 cm, and 100 cm) over the period 1961 - 2020. The results reveal notable differences in flash drought occurrence between regions and across soil depths, with the shallowest layer (D7) showing the highest sensitivity to dry conditions. Although variations exist in absolute values, all results from three criteria consistently identify high flash drought frequency and duration in regions R1, R2, R4, and R7. Flash droughts primarily occur during the rainy season: JJA (June - August) in the northern regions (R1 - R3) and SON (September - November) in the southern regions (R4 - R7). Notably, flash droughts tend to occur on a broad spatial scale in sub-regions R1 - R3 and R7, where approximately 60% of the identified events affected more than 50% of the regional area, based on D7 and D28 criteria. These findings provide a scientific basis for selecting relevant variables and constructing appropriate input datasets for future flash drought forecasting and early warning models.


 

Keywords: Geographic extent, flash droughts, Vietnam.

References

[1] H. T. Minh, Nguyen. V. Toan, P. V. Tan, Flash Drought in Vietnam and Some of Its Characteristics During the Period of 1961 - 2020, Journal of Hydro-Meteorology, Vol. 752, 2023,
pp. 75-86,
https://doi.org/10.36335/VNJHM.2023(752).75-86.
[2] N. M. Nguyen, M. Choi, Delving into Flash Droughts in Vietnam During the Last Two Decades Using the Standardized Evaporative Stress Ratio, J. Hydrol., Vol. 630, 2024, pp. 130669,
https://doi.org/10.1016/j.jhydrol.2024.130669.
[3] M. Svoboda et al., The Drought Monitor, Bull. Am. Meteorol. Soc., Vol. 83, 2002, pp. 1181-1190.
[4] J. Lisonbee, M. Woloszyn, M. Skumanich, Making Sense of Flash Drought: Definitions, Indicators, and Where We Go from Here, J. Appl. Serv. Climatol., Vol. 2021, No. 1, 2021, pp. 1-19.
[5] R. D. Koster, S. D. Schubert, H. Wang, S. P. Mahanama, A. M. DeAngelis, Flash Drought as Captured by Reanalysis Data: Disentangling the Contributions of Precipitation Deficit and Excess Evapotranspiration, J. Hydrometeorol., Vol. 20, 2019, pp. 124-1258, https://doi.org/10.1175/jhm-d-18-0242.1.
[6] K. Lesinger, D. Tian, Trends, Variability, and Drivers of Flash Droughts in the Contiguous United States, Water Resour. Res., Vol. 58, 2022, pp. e2022WR032186,
https://doi.org/10.1029/2022wr032186.
[7] M. Osman, B. F. Zaitchik, H. S. Badr, J. Otkin, Y. Zhong, D. Lorenz et al., Diagnostic Classification of Flash Drought Events Reveals Distinct Classes of Forcings and Impacts, J. Hydrometeorol.,
Vol. 23, 2022, pp. 275-289,
https://doi.org/10.1175/jhm-d-21-0134.1.
[8] J. A. Otkin, M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, M. Svoboda, Examining Rapid Onset Drought Development Using the Thermal Infrared–Based Evaporative Stress Index, J. Hydrometeorol., Vol. 14, 2013, pp. 1057-1074,
https://doi.org/10.1175/jhm-d-12-0144.1.
[9] J. A. Otkin, M. C. Anderson, C. Hain, M. Svoboda, Examining the Relationship Between Drought Development and Rapid Changes in the Evaporative Stress Index, J. Hydrometeorol.,
Vol. 15, 2014, pp. 938-956,
https://doi.org/10.1175/jhm-d-13-0110.1.
[10] J. A. Otkin et al., Facilitating the Use of Drought Early Warning Information Through Interactions with Agricultural Stakeholders, Bull. Am. Meteorol. Soc., Vol. 96, 2015, pp. 1073-1078.
[11] E. Hunt et al., Agricultural and Food Security Impacts from the 2010 Russia Flash Drought, Wea. Climate Extremes, Vol. 34, 2021, pp. 100383,
https://doi.org/10.1016/j.wace.2021.100383.
[12] H. Nguyen, M. C. Wheeler, J. A. Otkin, T. Cowan, A. Frost, R. Stone, Using the Evaporative Stress Index to Monitor Flash Drought in Australia, Environ. Res. Lett., Vol. 14, 2019, pp. 064016,
https://doi.org/10.1088/1748-9326/ab2103.
[13] V. Sreeparvathy, V. V. Srinivas, A Bayesian Fuzzy Clustering Approach for Design of Precipitation Gauge Network Using Merged Remote Sensing and Ground-Based Precipitation Products, Water Resour. Res., Vol. 58, 2022, pp. e2021WR030612,
https://doi.org/10.1029/2021wr030612.
[14] X. Yuan, L. Wang, E. F. Wood, Anthropogenic Intensification of Southern African Flash Droughts as Exemplified by the 2015/16 Season, Bull. Am. Meteorol. Soc., Vol. 99, 2018, pp. 86-90.
[15] Y. Wang, X. Yuan, Anthropogenic Speeding up of South China Flash Droughts as Exemplified by the 2019 Summer-Autumn Transition Season, Geophys. Res. Lett., Vol. 48, 2021,
pp. e2020GL091901,
https://doi.org/10.1029/2020GL091901.
[16] T. Gerken, G. T. Bromley, B. L. Ruddell, S. Williams, P. C. Stoy, Convective Suppression Before and During the United States Northern Great Plains Flash Drought of 2017, Hydrol. Earth Syst. Sci., Vol. 22, 2018, pp. 4155–4163.
[17] R. Singh, V. Mishra, Atmospheric and Land Drivers of Streamflow Flash Droughts in India, J. Geophys. Res. Atmos., Vol. 129, 2024,
pp. e2023JD040257,
https://doi.org/10.1029/2023JD040257.
[18] Y. Wang, X. Yuan, Land-Atmosphere Coupling Speeds up Flash Drought Onset, Sci. Total Environ., Vol. 851, 2022, pp. 158109,
https://doi.org/10.1016/j.scitotenv.2022.158109.
[19] C. Wang, C. Deser, J. Y. Yu, P. DiNezio, A. Clement, El Niño and Southern Oscillation (ENSO): A Review, in: Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, Springer, 2017, pp. 85-106.
[20] X. Jiang, Á. F. Adames, D. Kim, E. D. Maloney, H. Lin, H. Kim, et al., Fifty Years of Research on the Madden - Julian Oscillation: Recent Progress, Challenges, and Perspectives, J. Geophys. Res. Atmos., Vol. 125, 2020, pp. e2019JD030911,
https://doi.org/10.1029/2019jd030911.
[21] A. Pachore, R. Remesan, J. Kuttippurath, Flash Drought Teleconnection with the Large-Scale Climate Drivers in the Homogeneous Rainfall Regions of India, Int. J. Climatol., Vol. 45, 2025, pp. e8711, https://doi.org/10.1002/joc.8711.
[22] M. C. Anderson et al., An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U. S. Drought Monitor Classifications, J. Hydrometeorol., Vol. 14, 2013, pp. 1035 - 1056.
[23] M. Mozny et al., Use of a Soil Moisture Network for Drought Monitoring in the Czech Republic, Theor. Appl. Climatol., Vol. 107, 2012, pp. 99-111.
[24] T. W. Ford, C. F. Labosier, Meteorological Conditions Associated with the Onset of Flash Drought in the Eastern United States, Agric. For. Meteorol., Vol. 247, 2017, pp. 414-423.
[25] J. I. Christian et al., A Methodology for Flash Drought Identification: Application of Flash Drought Frequency Across the United States, J. Hydrometeorol., Vol. 20, 2019, pp. 833-846.
[26] F. D. Noguera, S. M. V. Serrano, Characteristics and Trends of Flash Droughts in Spain, 1961 - 2018, Ann. N. Y. Acad. Sci., Vol. 1472, 2020,
pp. 155 - 172.
[27] K. C. Mo, D. P. Lettenmaier, Precipitation Deficit Flash Droughts over the United States, J. Hydrometeorol., Vol. 17, 2016, pp. 1169 - 1184,
https://doi.org/10.1175/jhm-d-15-0158.1.
[28] X. Yuan, L. Wang, P. Wu, P. Ji, J. Sheffield, M. Zhang, Anthropogenic Shift Towards Higher Risk of Flash Drought over China, Nat. Commun.,
Vol. 10, 2019, pp. 12692,
https://doi.org/10.1038/s41467-019-12692-7.
[29] Y. Zhang, Q. You, G. Mao, C. Chen, X. Li, J. Yu, Flash Drought Characteristics by Different Severities in Humid Subtropical Basins: A Case Study in the Gan River Basin, China, J. Climate, Vol. 34, 2021, pp. 7337-7357,
https://doi.org/10.1175/jcli-d-20-0596.1.
[30] L. Chen, T. W. Ford, P. Yadav, The Role of Vegetation in Flash Drought Occurrence: A Sensitivity Study Using Community Earth System Model Version 2, J. Hydrometeorol., Vol. 22, 2021, pp. 845-857, https://doi.org/10.1175/jhm-d-20-0214.1.
[31] L. Cheng, M. Hoerling, A. AghaKouchak, B. Livneh, X. W. Quan, J. Eischeid, How Has Human-Induced Climate Change Affected California Drought Risk?, J. Climate, Vol. 29, 2016, pp. 111-120,
https://doi.org/10.1175/JCLI-D-15-0260.1.
[32] J. Sheffield, G. Goteti, F. Wen, E. F. Wood, A Simulated Soil Moisture-Based Drought Analysis for the United States, J. Geophys. Res., Vol. 109, 2004, pp. D24108,
https://doi.org/10.1029/2004JD005182.
[33] Y. Qing, S. Wang, B. C. Ancell, Z. L. Yang, More Rapid Intensification of Flash Droughts with Shorter Onset Timescales, Preprint, 2021,
https://doi.org/10.21203/rs.3.rs-267288/v1.
[34] D. Q. Nguyen, J. Renwick, J. McGregor, Variations of Surface Temperature and Rainfall in Vietnam from 1971 to 2010, Int. J. Climatol.,
Vol. 34, 2014, pp. 249-264,
https://doi.org/10.1002/joc.3684.
[35] P. T. T. Nga, P. T. Ha, V. T. Hang, Satellite-Based Regionalization of Solar Irradiation in Vietnam by K-Means Clustering, J. Appl. Meteor. Climatol., Vol. 60, 2021, pp. 391-402,
https://doi.org/10.1175/JAMC-D-20-0070.1.
[36] H. P. Thanh, L. Thi, H. Phan, A. H. Fink, R. V. D. Linden, T. P. Van, Heatwaves in Vietnam: Characteristics and Relationship with Large-Scale Climate Drivers, Int. J. Climatol., Vol. 44, 2024, pp. 4725-4740, https://doi.org/10.1002/joc.8606.
[37] J. I. Christian, J. B. Basara, E. D. Hunt, J. A. Otkin, J. C. Furtado, V. Mishra, X. Xiao, R. M. Randall, Global Distribution, Trends, and Drivers of Flash Drought Occurrence, Nat. Commun., Vol. 12, 2021, pp. 1-11,
https://www.nature.com/articles/s41467-021-26692-z (accessed on: August 15th, 2025).
[38] T. Parker, A. Gallant, M. Hobbins, D. Hoffmann, Flash Drought in Australia and Its Relationship to Evaporative Demand, Environ. Res. Lett., Vol. 16, 2021, pp. 064033.
[39] J. Shah, V. Hari, O. Rakovec, Y. Markonis, L. Samaniego, V. Mishra, M. Hanel, C. Hinz, R. Kumar, Increasing Footprint of Climate Warming on Flash Drought Occurrence in Europe, Environ. Res. Lett., Vol. 17, 2022, pp. 064017.
[40] M. S. Saharwardi, W. U. Hassan, H. P. Dasari, Y. Abualnaja, I. Hoteit, Enhanced Flash Droughts in Recent Decades over the Arabian Peninsula, J. Hydrol. Reg. Stud., Vol. 61, 2025, pp. 102696,
https://doi.org/10.1016/j.ejrh.2025.102696.