Technologies for Ultrapure Water Production in Semiconductor Industry
Main Article Content
Abstract
The semiconductor industry has become one of the most critical pillars of the global economy, with projected revenues expected to exceed USD one trillion by 2030. A key but often underappreciated resource underpinning semiconductor manufacturing is ultrapure water (UPW), which is indispensable for wafer cleaning, photolithography, chemical vapor deposition, and other precision processes. This review provides an overview of emerging technologies in UPW production for semiconductor manufacturing that have long been employed and remain foundational to UPW systems. We also emphasize the importance of integrated solutions with advanced oxidation processes, solar-driven energy system, and artificial intelligence. Together, these synergies create pathways toward greener, more resilient, and economically viable UPW production. These strategies are expected to ensure superior water purity, operational efficiency, and environmental sustainability, thereby supporting the long-term growth and competitiveness of the semiconductor sector.
References
R. Su, X. Fu, A Mini Review on Contamination Control in Ultrapure Liquids for Semiconductor Manufacturing - from the Perspective of Liquid-Solid Interfaces, Flow Measurement and Instrumentation, Vol. 102, 2025, pp. 102791, https://doi.org/10.1016/j.flowmeasinst.2024.102791.
[2] W. Xiong, D. D. Wu, J. H. Y. Yeung, Semiconductor Supply Chain Resilience and Disruption: Insights, Mitigation, and Future Directions, Int J Prod Res, Vol. 63, 2025,
pp. 3442-3465, https://doi.org/10.1080/00207543.2024.2387074.
[3] Y. Ren, Y. Yang, Y. Wang, Y. Liu, Dynamics of Tthe Global Semiconductor Trade and its Dependencies, Journal of Geographical Sciences, Vol. 33, 2023, pp. 1141-1160, https://doi.org/10.1007/s11442-023-2123-9.
[4] Q. Wang, N. Huang, H. Cai, X. Chen, Y. Wu, Water Strategies and Practices for Sustainable Development in the Semiconductor Industry, Water Cycle, Vol. 4, 2023, pp. 12-16, https://doi.org/10.1016/j.watcyc.2022.12.001.
[5] S. J. Choi, L. Crane, S. Kang, T. H. Boyer, F. Perreault, Removal of Urea in Ultrapure Water System by Urease-coated Reverse Osmosis Membrane, Water Res X, Vol. 22, 2024,
pp. 100211, https://doi.org/10.1016/j.wroa.2024.100211.
[6] X. Zhang, Y. Yang, H. H. Ngo, W. Guo, H. Wen, X. Wang, J. Zhang, T. Long, A Critical Review on Challenges and Trend of Ultrapure Water Production Process, Science of the Total Environment, Vol. 785, 2021, pp. 147254, https://doi.org/10.1016/j.scitotenv.2021.147254.
[7] X. Tang, W. Pronk, A. Ding, X. Cheng, J. Wang, B. Xie, G. Li, H. Liang, Coupling GAC to Ultra-Low-pressure Filtration to Modify The Biofouling Layer and Bio-community: Flux Enhancement And Water Quality Improvement, Chemical Engineering Journal, Vol. 333, 2018, pp. 289-299, https://doi.org/10.1016/j.cej.2017.09.111.
[8] S. Ribeiro Pinela, A. Larasati, R. J. W. Meulepas, M. C. Gagliano, R. Kleerebezem, H. Bruning, H. H. M. Rijnaarts, Ultrafiltration (UF) and Biological Oxygen-dosed Activated Carbon (BODAC) Filtration to Prevent Fouling of Reversed Osmosis (RO) Membranes: A Mass Balance Analysis, Journal of Water Process Engineering, Vol. 57, 2024, pp. 104648, https://doi.org/10.1016/j.jwpe.2023.104648.
[9] O. Bernadet, A. Larasati, H. P. J. V. Veelen, G. J. W. Euverink, M. C. Gagliano, Biological Oxygen-dosed Activated Carbon (BODAC) Filters - A Bioprocess for Ultrapure Water Production Removing Organics, Nutrients and Micropollutants, J. Hazard Mater, Vol. 458, 2023, pp. 131882, https://doi.org/10.1016/j.jhazmat.2023.131882.
[10] C. Kim, H. Yoo, G. Lee, H. J. Hong, Powdered Activated Carbon (PAC)-assisted Peroxymonosulfate Activation for Efficient Urea Elimination in Ultrapure Water Production From Reclaimed Water, Sci Rep, Vol. 14, 2024,
pp. 4597,
https://doi.org/10.1038/s41598-024-55414-w.
[11] T. Sun, K. Chen, A Novel Low-energy Hybrid Process for the Removal of Organic Contaminants in Ultrapure Water Systems, Asia-Pacific Journal of Chemical Engineering, Vol. 8, 2013,
pp. 804-810, https://doi.org/10.1002/apj.1724.
[12] P. Zhao, Y. Bai, B. Liu, H. Chang, Y. Cao, J. Fang, Process Optimization for Producing Ultrapure Water with High Resistivity and Low Total Organic Carbon, Process Safety and Environmental Protection, Vol. 126, 2019,
pp. 232-241, https://doi.org/10.1016/j.psep.2019.04.017.
[13] T. H. Kong, P. Thangavel, S. Shin, S. Kwon, H. Choi, H. Lee, N. Park, J. J. Woo, Y. Kwon, In-Situ Ionomer-Free Catalyst-Coated Membranes for Anion Exchange Membrane Water Electrolyzers, ACS Energy Lett, Vol. 8, 2023, pp. 4666-4673, https://doi.org/10.1021/acsenergylett.3c01418.
[14] H. Dong, C. M. Laguna, M. J. Liu, J. Guo, W. A. Tarpeh, Electrified Ion Exchange Enabled by Water Dissociation in Bipolar Membranes for Nitrogen Recovery from Source-Separated Urine, Environ Sci Technol, Vol. 56, 2022,
pp. 16134-16143, https://doi.org/10.1021/acs.est.2c03771.
[15] P. Gao, J. Cui, Y. Deng, Direct Regeneration of Ion Exchange Resins with Sulfate Radical-Based Advanced Oxidation for Enabling A Cyclic Adsorption - Regeneration Treatment Approach to Aqueous Perfluorooctanoic Acid (PFOA), Chemical Engineering Journal, Vol. 405, 2021,
pp. 126698, https://doi.org/10.1016/j.cej.2020.126698.
[16] V. Franke, M. Ullberg, P. McCleaf, M. Wålinder, S. J. Köhler, L. Ahrens, The Price of Really Clean Water: Combining Nanofiltration with Granular Activated Carbon and Anion Exchange Resins for the Removal of Per- and Polyfluoralkyl Substances (PFASs) in Drinking Water Production, ACS ES and T Water, Vol. 1, 2021, pp. 782-795, https://doi.org/10.1021/acsestwater.0c00141.
[17] Z. Lin, F. Li, X. Liu, J. Su, Preparation of Corn Starch/Acrylic Acid/Itaconic Acid Ion Exchange Hydrogel and its Adsorption Properties for Copper and Lead Ions in Wastewater, Colloids Surf a Physicochem Eng Asp, Vol. 671, 2023,
pp. 131668, https://doi.org/10.1016/j.colsurfa.2023.131668.
[18] X. Li, K. Yang, Z. Wang, Y. Chen, Y. Li, J. Guo, J. Zheng, S. Li, S. Zhang, Chain Architecture Dependence of Morphology and Water Transport in Poly(fluorene alkylene)-Based Anion-Exchange Membranes, Macromolecules, Vol. 55, 2022,
pp. 10607 - 10617, https://doi.org/10.1021/acs.macromol.2c01488.
[19] A. B. Santos, A. Giacobbo, M. A. S. Rodrigues, A. M. Bernardes, Integrated Membrane Process (UF/RO/EDI) for Treating A Petrochemical Wastewater to Obtain Ultrapure Water for Industrial Reuse, Process Safety and Environmental Protection, Vol. 177, 2023,
pp. 223-231, https://doi.org/10.1016/j.psep.2023.07.001.
[20] D. Kim, H. Lee, J. Jeon, S. Kim, High Recovery Design of Reverse Osmosis Process With High Permeate Water Quality and Low Wastewater Discharge for Ultra-pure Water Production, Desalination, Vol. 592, 2024, pp. 118149, https://doi.org/10.1016/j.desal.2024.118149.
[21] X. Tong, Z. W. Zhang, Y. H. Wu, Y. Bai, N. Ikuno, K. Ishii, H. Y. Hu, Ultrafiltration Significantly Increased the Scaling Potential of Municipal Secondary Effluent on Reverse Osmosis Membranes, Water Res, Vol. 220, 2022,
pp. 118672, https://doi.org/10.1016/j.watres.2022.118672.
[22] Q. Wang, L. Luo, N. Huang, W. Wang, Y. Rong, Z. Wang, Y. Yuan, A. Xu, J. Xiong, Q. Wu, H. Hu, Evolution of Low Molecular Weight Organic Compounds During Ultrapure Water Production Process: A Pilot-scale Study, Science of the Total Environment, Vol. 830, 2022, pp. 154713, https://doi.org/10.1016/j.scitotenv.2022.154713.
[23] Z. He, Y. Li, Y. Wang, C. J. Miller, J. Fletcher,
B. Lian, T. D. Waite, Insufficient Desorption of Ions in Constant-Current Membrane Capacitive Deionization (MCDI): Problems and Solutions, Water Res, Vol. 242, 2023, pp. 120273, https://doi.org/10.1016/j.watres.2023.120273.
[24] T. H. Chen, K. H. Yeh, C. F. Lin, M. Lee, C. H. Hou, Technological and Economic Perspectives of Membrane Capacitive Deionization (MCDI) Systems in High-Tech Industries: from Tap Water Purification to Wastewater Reclamation for Water Sustainability, Resour Conserv Recycl, Vol. 177, 2022, pp. 106012, https://doi.org/10.1016/j.resconrec.2021.106012.
[25] M. H. Tsai, S. J. Chao, D. C. Wang, I. H. Lin, L. C. Chung, P. I. Liu, L. C. Hua, H. Y. Huang, C. C. Hu, Mechanistic Insights Into Capacitive Ion Exchange for Selective Divalent Ion Removal Using Activated Carbon Electrodes, Chemical Engineering Journal, Vol. 521, 2025, pp. 166833, https://doi.org/10.1016/j.cej.2025.166833.
[26] K. M. Lee, A. Jang, M. Park, M. Park, J. Jang,
Y. Kim, S. J. Choi, Y. H. Kim, C. Lee, Hybrid-Capacitive Deionization with Combined Faradaic and Capacitive Reactions For Silicate Removal, Environmental Engineering Research, Vol. 30, 2024, pp. 240542, https://doi.org/10.4491/eer.2024.542.
[27] M. M. Elewa, M. E. Batouti, N. F. A. Harby, A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes, Materials, Vol. 16, 2023, pp. 4872, https://doi.org/10.3390/ma16134872.
[28] C. Oh, J. An, S. Yeon, H. J. Oh, Evaluation of Total Dissolved Solids Removal Characteristics by Recycling Concentrated Water in Membrane Capacitive Deionization Process, Desalination Water Treat, Vol. 264, 2022, pp. 54-61, https://doi.org/10.5004/dwt.2022.28521.
[29] T. Arthur, G. J. Millar, J. Love, Thermal Management of Water Electrolysis Using Membrane Distillation to Produce Pure Water for Hydrogen Production, Journal of Water Process Engineering, Vol. 67, 2024, pp. 106255, https://doi.org/10.1016/j.jwpe.2024.106255.
[30] R. Schwantes, Y. Morales, E. Pomp, J. Singer,
K. Chavan, F. Saravia, Thermally Driven Ultrapure Water Production for Water Electrolysis - A Techno-Economic Analysis of Membrane Distillation, Desalination, Vol. 608, 2025,
pp. 118848, https://doi.org/10.1016/j.desal.2025.118848.
[31] D. Fang, D. M. Amiruddin, I. Kao, D. Mahajan,
X. Chen, B. S. Hsiao, Towards the Optimization of a Photovoltaic/Membrane Distillation System for the Production of Pure Water, Membranes (Basel), Vol. 14, 2024, pp. 110, https://doi.org/10.3390/membranes14050110.
[32] M. U. Farid, J. A. Kharraz, J. Sun, M. W. Boey, M. A. Riaz, P. W. Wong, M. Jia, X. Zhang, B. J. Deka, N. K. Khanzada, J. Guo, A. K. An, Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-energy-environment Nexus, Advanced Materials, Vol. 36, 2024, pp. 2307950, https://doi.org/10.1002/adma.202307950.
[33] W. Z. Ousman, E. Alemayehu, P. Luis, Integration of Reverse Osmosis and Membrane Distillation for Fluoride Removal from Groundwater Aiming at a Zero-waste Discharge Process, J. Environ Chem Eng, Vol. 13, 2025, pp. 117863, https://doi.org/10.1016/j.jece.2025.117863.
[34] B. A. Maqbali, Z. R. Ahar, H. Mousa, G. R. V. Nezhaad, Proposing an Ultrapure Water Unit Coupled to an Existing Reverse Osmosis Desalination Plant and its Exergy Analysis, International Journal of Thermodynamics, Vol. 25, 2022, pp. 39-52, https://doi.org/10.5541/ijot.930459.
[35] M. W. Saleem, S. Ali, M. Usman, T. N. Chaudhary, A. Ullah, M. Arslan, A. U. Hameed, Integration of Capacitive Deionization and Forward Osmosis for High Water Recovery and Ultrapure Water Production: Concept, Modelling And Performance Analysis, Environmental Technology (United Kingdom), Vol. 45, 2024, pp. 6136-6157, https://doi.org/10.1080/09593330.2024.2326798.
[36] M. S. Gaikwad, S. K. Suman, K. Shukla, A. V. Sonawane, S. N. Jain, A Review on Recent Contributions in the Progress of Membrane Capacitive Deionization for Desalination And Wastewater Treatment, International Journal of Environmental Science and Technology, Vol. 20, 2023, pp. 14073-14088, https://doi.org/10.1007/s13762-023-04778-z.
[37] W. Zhao, C. A. Q. Jensen, Z. Zhong, N. Li, S. S. Araya, A. Ali, V. Liso, Membrane Distillation for Producing Ultra-pure Water for PEM electrolysis, Int J Hydrogen Energy, Vol. 99, 2025,
pp. 232-240, https://doi.org/10.1016/j.ijhydene.2024.12.219.
[38] A. H. Miraflores, K. H. Gómez, C. Muro, M. C. D. Hernández, V. D. Blancas, J. Á. Sánchez, G. E. D. Isordia, Ultrapure Water Production by a Saline Industrial Effluent Treatment, Membranes (Basel), Vol. 15, 2025, pp. 116, https://doi.org/10.3390/membranes15040116.
[39] P. Westerhoff, H. Moon, D. Minakata, J. Crittenden, Oxidation of Organics in Retentates From Reverse Osmosis Wastewater Reuse Facilities, Water Res, Vol. 43, 2009,
pp. 3992-3998, https://doi.org/10.1016/j.watres.2009.04.010.
[40] W. Zeng, H. Zhang, J. Zhao, J. Wang, L. Bai, G. Li, H. Liang, Synergistic Roles of Oxidation and Self-Aggregation in Efficient Ultrafiltration Membrane Fouling Alleviation Using A Flow-Through Sb-SnO2 anode during wastewater reclamation, Water Res, Vol. 249, 2024,
pp. 121003, https://doi.org/10.1016/j.watres.2023.121003.
[41] A. B. Rostam, M. Taghizadeh, Advanced Oxidation Processes Integrated by Membrane Reactors and Bioreactors for Various Wastewater Treatments: A Critical Review, J. Environ Chem Eng, Vol. 8, 2020, pp. 104566, https://doi.org/10.1016/j.jece.2020.104566.
[42] A. Zein, S. Karaki, M. A. Hindi, Analysis of Variable Reverse Osmosis Operation Powered by Solar Energy, Renew Energy, Vol. 208, 2023,
pp. 385-398, https://doi.org/10.1016/j.renene.2023.03.001.
[43] B. Kokabian, U. Ghimire, V. G. Gude, Water Deionization with Renewable Energy Production in Microalgae - Microbial Desalination Process, Renew Energy, Vol. 122, 2018, pp. 354-361, https://doi.org/10.1016/j.renene.2018.01.061.
[44] C. S. Ahamefule, C. J. Ugwuodo, P. O. Idike, J. C. Ogbonna, Application of Photosynthetic Microalgae in the Direct Desalination Pretreatment of Seawater, Water and Environment Journal,
Vol. 35, 2021, pp. 657-669, https://doi.org/10.1111/wej.12659.
[45] H. R. Bahrami, S. Gorjian, H. Mokhtarzadeh, B. Ghobadian, A. Kuriqi, J. Gheisari, Performance Evaluation of a Solar-Powered Membrane Capacitive Deionization System Considering Energy Recovery, Results in Engineering, Vol. 26, 2025, pp. 105552, https://doi.org/10.1016/j.rineng.2025.105552.
[46] A. Tayara, C. Shang, J. Zhao, Y. Xiang, Machine Learning Models for Predicting the Rejection of Organic Pollutants by Forward Osmosis and Reverse Osmosis Membranes and Unveiling the Rejection Mechanisms, Water Res, Vol. 266, 2024,
pp. 122363, https://doi.org/10.1016/j.watres.2024.122363.
[47] T. O. Obidara, M. A. Abdulhamid, M. A. Azeem, D. U. Lawal, J. Usman, S. I. Abba, T. N. Baroud, Optimization of Polyimide-based Membrane Distillation Performance Through Machine Learning Parametric Study, J. Environ Chem Eng, Vol. 13, 2025, pp. 118645, https://doi.org/10.1016/j.jece.2025.118645.