The Effect of Different Extraction Procedures on Antioxidant Activity of Garlic (Allium sativum L.) Essential Oil
Main Article Content
Abstract
This paper studies the effect of different extraction procedures such as soxhlet extraction using n-hexane, distillation method and supercritical extraction (SFE) on the physicochemical properties of garlic essential oil. The yield of garlic essential oil by soxhlet extraction, steam distillation and SFE-CO2 methods was approximately 0.441, 0.124 and 0.465 %, respectively. The results of the oil analysis by gas chromatography/mass spectrometry method show the presence of five major compounds, including diallyl sulfide, diallyl disulfide, 3-vinyl-1,2-dithiacyclohex-4-ene, 3-vinyl-1,2-dithiacyclohex-5-ene and diallyl trisulfide. The antioxidant activity of the essential oil obtained by the SFE-CO2 method was significantly higher than by the distillation method, but was lower than the acid ascorbic one.
Keywords
Garlic essential oil, SFE, GC-MS, antioxidant activity, extraction.
References
[1] R. Lawrencea, K. Lawrenceb, Antioxidant activity of garlic essential oil (Allium Sativum) grown in north Indian plains, Asian Pacific Journal of Tropical Biomedicine 1 (2011) 51-54. https://doi.org/10.1016/S2221-1691(11)60122-6.
[2] Dziri, H. Casabianca, B. Hanchi, K. Hosni, Composition of garlic essential oil (Allium sativum L.) as influenced by drying method, Journal of Essential Oil Research 26 (2014) 91-96. https://doi.org/10.1080/10412905.2013.868329.R.
[3] Li, W. Chen, W. Wang, W. Tian, X.Z. Rrui, Extraction of essential oils from garlic (Allium sativum) using ligarine as solvent and its immunity activity in gastric cancer rat, Medicinal Chemistry Research 19 (2010) 1092-1105. https://doi.org/10.1007/s00044-009-9255-z.
[4] M.K. Gafar, A.U. Itodo, A. A. Warra, L. Abdullahi, Extraction and Physicochemical Determination of Garlic (Allium sativum L) Oil, International Journal of Food and Nutrition science 1 (2012) 4-7.
[5] A.P. Sa´nchez-Camargo, J.A. Mendiola, E. Iba´n˜ez, M. Herrero, Supercritical Fluid Extraction, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (2014) 1-17. https://doi.org/10.1016/b978-0-12-409547-2.10753-x.
[6] A. Rafe, M. S. Nadjafi, Physicochemical characteristics of garlic (Allium sativum L.) oil: Effect of extraction procedure, International Journal of Nutrition and Food Sciences 3 (2014) 1-5. https://doi.org/10.11648/j.ijnfs.s.2014030601.11.
[7] J. M. del Valle, C. Mena, M. Budinich, Extraction of garlic with supercritical CO2 and conventional organic solvents, Brazilian Journal of Chemical Engineering, 25 (2008) 535-542. https://doi.org/10.1590/S0104-66322008000300011.
[8] A.E. Andreatta, G. Foco, G. Mabe, S.B. Bottini, Extraction of garlic oil with quasi-critical solvents, 4th Mercosur Congress on Process Systems Engineering (2014) 1-9.
[9] H. Kamali, N. Aminimoghadamfarouj, E. Golmakani, A. Nematollahi, The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through static-dynamic steps procedure and semi-continuous technique using response surface method, Pharmacognosy Res 7 (2015) 57-65. https://doi.org/10.4103/0974-8490.147209.
[10] L.D. Lawson, Z.J. Wang, B.G. Hughes, Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products, Planta Med, 57 (1991) 363-370. https://doi.org/10.1055/s-2006-960119.
[11] E. A. O'Gara, D. J. Hill, D. J. Maslin, Activities of Garlic Oil, Garlic Powder, and Their Diallyl Constituents against Helicobacter pylori, Applied and Environmental Microbiology 66 (2000) 2269-2273. https://doi.org/10.1128/aem.66.5.2269-2273.2000.
[12] X. Qiao, Molecular distillation separation and purification of essential oils of garlic, Food science Shandong 5 (2007) 60.
[13] M. Iranshahi, A review of volatile sulfur-containing compounds from terrestrial plants: biosynthesis, distribution and analytical methods, The Journal of Essential Oil Research, 24 (2012) 393-434. https://doi.org/10.1080/10412905.2012.692918.
[14] M. Corzo-Martı´nez, N. Corzo, M. Villamiel, Biological properties of onions and garlic, Trends in Food Science & Technology 18 (2007) 609-625. https://doi.org/10.1016/j.tifs.2007.07.011.
[15] K. Khoshtinat, M. Barzegar, M. A. Sahari, Z. Hamidi, Comparison of Antioxidant and Antibacterial Activities of Free and Encapsulated Garlic Oil with Beta-cyclodextrin, Applied food biotechnology 3 (2016) 254-268. https://doi.org/10.22037/afb.v3i4.12631.