Sai Cong Doanh, Luu Manh Quynh

Main Article Content

Abstract

In recent years, glucose oxidase (GOx) based sugar level detecting techniques have been intensively developed. In order to improve the diagnosis and desease treatment in low- and middle-income countries, the low cost, easily processing, but still high sensitive sensing systems/equipments play a very important rules in biomedicine and life science. In this work, lead sulfide (PbS) nanocolloids were used as electron receptor. The results showed that the sensitivity of the glucose sensor reached 546.2 μA cm-2 mM-1. It is note that, some early works on GOx based glucose sensor only reached sensitivity less than 100 μA cm-2 mM-1.

Keywords: Lead sulfide nanoparticles, glucose sensor, glucose oxidase.

References

[1] http://www.who.int/mediacentre/factsheets/fs312/en/index.html
[2] Gavin, J.R. The Importance of Monitoring Blood Glucose. In US Endocrine Disease 2007; Touch Briefings: Atlanta, GA, USA, 2007; pp. 1–3.
[3] Kang, X.H.; Mai, Z.B.; Zou, X.Y.; Cai, P.X.; Mo, J.Y. A Novel Glucose Biosensor Based On Immobilization of Glucose Oxidase in Chitosan on A Glassy Carbon Electrode Modified with Gold-Platinum Alloy Nanoparticles/Multiwall Carbon Nanotubes. Anal. Biochem. 2007, 369, 71–79.
[4] Shervedani, R.K.; Mehrjardi, A.H.; Zamiri, N. A Novel Method for Glucose Determination Based On Electrochemical Impedance Spectroscopy Using Glucose Oxidase Self-Assembled Biosensor. Bioelectrochemistry 2006, 69, 201–208.
[5] Tang, H.; Chen, J.H.; Yao, S.Z.; Nie, L.H.; Deng, G.H.; Kuang, Y.F. Amperometric Glucose Biosensor Based On Adsorption of Glucose Oxidase at Platinum Nanoparticle-Modified Carbon Nanotube Electrode. Anal. Biochem. 2004, 331, 89–97.
[6] Wang, S.G.; Zhang, Q.; Wang, R.L. ; Yoon, S.F.; Ahn, J.; Yang, D.J. Multi-Walled Carbon, Nanotubes for the Immobilization of Enzyme in Glucose Biosensors. Electrochem. Commun. 2003, 5, 800–803.
[7] Tsai, Y.C.; Li, S.C.; Chen, J.M. Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function. Langmuir 2005, 21,3653–3658.
[8] Wang, J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis 2001, 13, 983-988.
[9] 9. Kormos, F.; Sziraki, L.; Tarsiche, I. Potentiometric Biosensor fr Urinary Clucose Level Monitoring, RLA. 2000, 12, 291-295.
[10] Wei, A.; Suna, X.W.; Wang, J.X.; Lei, Y.; Cai, X.P.; Li, C.M.; Dong, Z.L.; Huang, W. Enzymatic Glucose Biosensor Based On ZnO Nanorod Array Grown by Hydrothermal Decomposition. Appl. Phys. Lett. 2006, 89, 123902(1–3).
[11] Cui, G.; Kim, S.J.; Choi, S.H.; Nam, H.; Cha, G.S. A Disposable Amperometric Sensor Screen Printed on a Nitrocellulose Strip: A Glucose Biosensor Employing Lead Oxide as an Interference-Removing Agent. Anal. Chem. 2000, 72, 1925–1929.
[12] Zang, J.; Li, C.M.; Cui, X.; Wang, J.; Sun, X.; Chang, H.D.; Sun, Q. Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor. Electroanalysis 2007, 19,1008–1014.
[13] Zhao, Z.W.; Chen, X.J.; Tay, B.K.; Chen, J.S.; Han, Z.J.; Khor, K.A. A Novel Amperometric Biosensor Based On ZnO: Co Nanoclusters For Biosensing Glucose. Biosens. Bioelectron. 2007,23, 135–139.
[14] Yang, H.; Zhu, Y. Glucose biosensor Based on nano-SiO2 and “unprotected” Pt nanoclusters. Biosens. Bioelectron. 2007, 22, 2989–2993.
[15] Yang, D.H.; Takahara, N.; Lee, S.-W.; Kunitake, T. Fabrication of Glucose-Sensitive TiO2 Ultrathin Films by Molecular Imprinting and Selective Detection of Monosaccharides. Sens. Actuat. B-Chem. 2008, 130, 379–385.
[16] Li, C.; Liu, Y.; Li, L.; Du, Z.; Xu, S.; Zhang, M.; Yin, X.; Wang, T. A Novel Amperometric Biosensor Based on NiO Hollownanospheres for Biosensing Glucose. Talanta 2008, 77, 455–459.
[17] Yang, K.; She, G.-W.; Wang, H.; Ou, X.-M.; Zhang, X.-H.; Lee, C.-S.; Lee, S.-T. ZnO Nanotube Arrays as Biosensors for Glucose. J. Phys. Chem. C 2009, 113, 20169–20172.
[18] Wang, Y.T.; Yu, L.; Zhu, Z.-Q.; Zhang, J.; Zhu, J.-Z.; Fan, C.-H. Improved Enzyme Immobilization for Enhanced Bioelectrocatalytic Activity of Glucose Sensor. Sens. Actuator B-Chem. 2009, 136, 332–337.
[19] Umar, A.; Rahman, M.M.; Hahn, Y.-B. MgO Polyhedral Nanocages and Nanocrystals Based Glucose Biosensor. Electrochem Commun. 2009, 11, 1353–1357.
[20] Jiang, L.C.; Zhang, W.-D. A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles-Modified Carbon Nanotube Electrode. Biosens. Bioelectron. 2010, 25, 1402–1407.
[21] Nguyen Thu Loan; Luu Manh Quynh; Ngo Xuan Dai; Nguyen Ngoc Long. Electrochemical biosensor for glucose sensor detection using zinc oxide nanotetrapods. Int. J. Nanotechnol., 2011, Vol. 8, Nos. ¾/5.
[22] Xiang, W.; Xinhui, L.; Yi, W.; Qing, G.; Zheng, F.; Xinhua, Zh.; Hongju, M.; Quinghui, J.; Lei, W.; Hui Zh.; Jianlong, Zh. QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosensors and bioelectronics. 2010. DOI. 10.1016./j.bios.2010.01.007.
[23] Wongyoung, L.; Neil, P. D.; Orlando, T.; Jung-Rok, L.; Jaeeun, H.; Takane, U.; Fritz, B. P. Area-selective atomic layer deposition of lead sulfide: nanoscale patterning and DFT simulations. Lngamuir. 2010, 26(9), 6845-6852.
[24] Jayesh, D. P.; Frej, M., Abdellah, A., Said, E. Room temperature synthesis of aminocaproic acid-capped lead sulfide nanoparticles. Materials Sciences and Applications, 2012, 3, 125-130.
[25] Le Van Vu; Sai Cong Doanh; Le Thi Nga; Nguyen Ngoc Long. Properties of PbS nanocrystals synthesized by sonochemical and sonoelectrochemical methods. E-J. Surf. Sci. Nanotech. 2011, 9, 494-498