The Structure of Liquid PbSiO3: Insight from Analysis and Visualization of Molecular Dynamics Data
Main Article Content
Abstract
The structural characteristics of liquid PbSiO3 have been investigated by means of the molecular dynamics simulation. The simulations were done in a microcanonical ensemble, using pair potentials. Models consisting of 5000 atoms (1000 Pb, 1000 Si and 3000 O) were constructed at different pressures and at temperatures 3200 K. The local structure and network topology were analyzed through radial distribution function, bond angle distributions and coordination number distribution. The local environment around Pb atoms and continuity of silica and lead oxide sub-networks as well as their change under compression are also discussed in detail, moreover, we have used visualization techniques illustrated network structure.
Keywords: Structural phase, liquid, triclusters, simulation, pressure.
References
[2] Wiza J L, Microchannel plate detectors, Nucl. Instrum. Meth. 62 (1979) 587.
[3] A. Abbas, J. Delaye, D. Ghaleb, G. Calas, “ Molecular dynamics study of the structure and dynamic behavior at the surface of a silicate glass” J. Non-Cryst. Solids 315 (2003) 187.
[4] H. Verweij and W.L. Konijnendijk, ‘‘Structural Units in K2O–PbO–SiO2 Glasses by Raman Spectroscopy,’’ J. Am. Ceram. Soc., 59 [11–12] (1976) 517.
[5] A.M Zahra, C.Y. Zahra, DSC and Raman studies of lead borate and lead silicate glasses, J. Non-cryst. Solids 155 (1993) 45.
[6] F. Fayon, C. Bessada, D. Massiot, I. Farnan, J.P. Coutures, 29Si and 207Pb NMR study of local order in lead silicate glasses, J.Non-Cryst. Solids 232–234 (1998) 403.
[7] F. Fayon, C. Landron, K. Sakurai, C. Bessada, D. Massiot, Pb2+ environment in lead silicate glasses probed by Pb-LIII edge XAFS and 207Pb NMR, J.Non-Cryst. Solids 243 (1999) 39.
[8] P.W. Wang, L.P. Zhang, Structural role of lead in lead silicate glasses derived from XPS spectra J. Non-Cryst. Solids 194 (1996) 129.
[9] H. Morikawa, Y. Takagi, H. Ohno, Structural analysis of 2PbO•SiO2 glass, J. Non-Cryst. Solids 53(1982) 173.
[10] M. Imaoka, H. Hasegawa I. Yasui, X-ray diffraction analysis on the structure of the glasses in the system PbO-SiO2, J. Non-Cryst. Solids 85(1986) 393.
[11] K. Yamada, A. Matsumoto, N. Niimura, T. Fukunaga, N.Hayashi, N. Watanabe, Short Range Structural Analysis of Lead Silicate Glasses by Pulsed Neutron Total Scattering, J. Phys. Soc. Jap 55 (1986) 831.
[12] M.L. Boucher, D.R. Peacor, The crystal structure of alamosite PbSiO3, Z. Kristallogr.126 (1968) 98.
[13] J. Rybicki, A. Rybicka, A. Witkowska, G. Bcrgmanski, A. DiCicco, M. Minicucci, G. Mancini, The structure of lead-silicate glasses: molecular dynamics and EXAFS studies, J. Phys. CM 13 (2001) 9781.
[14] Wei Jin, Rajiv K. Kalia, Priya Vashishta, and José P. Rino, Structural transformation in densified silica glass: A molecular-dynamics study, J P Phys. Rev. B 50 (1994) 118.
[15] Olivi-Tran N and Jullien R, Numerical simulations of aerogel sintering, Phys. Rev. B 52 (1995) 258.
[16] Valle R G D and Venuti E, High-pressure densification of silica glass: A molecular-dynamics simulation, Phys. Rev. B 54 (1996) 3809.
[17] Rat E, Foret M, Courtens E, Vacher R and Arai M, Observation of the Crossover to Strong Scattering of Acoustic Phonons in Densified Silica, Phys. Rev. Lett 83 (1999) 1355.
[18] Vacher R, Courtens E, Foret M, Hehlen B, Rat E, Casalta H and Dorner B, Brillouin scattering of neutrons and X-rays from glasses, Physica B 276–278 (2000) 427.
[19] Ishikawa K, Uchiyama Y, Ogawa H and Fujimura S, Dependence of TO and LO mode frequency of thermally grown silicon dioxide films on annealing temperature, Appl. Surf. Sci 117–118 (1997) 212.
[20] Zhu D M and Weng H F, Thermal conductivity and heat capacity study of a densified a-SiO2, J. Non-Cryst. Solids 185 (1995) 262.
[21] Woignier T, Duffours L and Phalippou J, Irreversible volume shrinkage of silica aerogels under isostatic pressure, J. Non-Cryst. Solids J. Non-Cryst. Solids 194 (1996) 283.
[22] Hiramatsu A, Arai M, Shibazaki H, Tsunekawa M, Otomo T, Hannon. A.C and Bennington. S.M, Investigation on permanently densified vitreous silica by means of neutron scattering, Physica B 219–220 (1996) 287.
[23] Tan .C.Z, Arndt. J and Xie. H.S, Optical properties of densified silica glasses, Physica B 252 (1998) 28.
[24] Tan. C.Z and Arndt. J, X-ray diffraction of densified silica glass, J. Non-Cryst. Solids 249 (1999) 47.
[25] Rigato. V, Boscarino. D, Maggioni. G, Mariotto. G, Pivin. J.C and Della Mea G, Physical properties of lead-silicate glassy thin films deposited by sputtering in Ar : H2 mixtures, Nuc. Inst.Meth. Phys. Res. B 116 (1996) 424.
[26] Hockney R W and Eastwood J W, Computer Simulation Using Particles, McGraw-Hill. New York (1981).
[27] E. Hemesath, L. R Corrales, Sensitivity of structural results to initial configurations and quench algorithms of lead silicate glass, J. Non-Crystalline Solids 351 (2005) 1522.
[28] Agnieszka Witkowska et al, Structure of partially reduced xPbO (1−x)SiO2 glasses: combined EXAFS and MD study, Non-crystalline Solids 351 (2005) 380-393.
[29] P.K. Hung and N.V. Hong, Simulation study of polymorphism and diffusion anomaly for SiO2 and GeO2liquid, Eur. Phys. J. B 71, (2009) pp 105-110.
[30] Horbach J, Th Voigtmann, The dynamics of silica melts under high pressure: mode-coupling theory results, J. Phys. Condens. Matter, Vol. 20, No. 24, (2008) pp. 244118.
[31] Young Hoon Yeom, Yang Kim, Karl Seff, Crystal structure of Pb2+44Pb4+5Tl+18O2−17–Si100Al92O384, zeolite X exchanged with Pb2+ and Tl+ and dehydrated, containing Pb4O4(Pb2+,Pb4+mixed)4 clusters, Microporous and Mesoporous Materials 28 (1999) 103.
[32] G Bergmanski et al, M Bialoskórski, M Rychcik-Leyk, A Witkowska, The structure of rarefied and densified PbSiO3 glass: a molecular dynamics study, Task quarterly 8 No 3 (2004), 393–412.