Calculation of Morse Potential Parameters of bcc Crystals and Application to Anharmonic Interatomic Effective Potential, Local Force Constant
Main Article Content
Abstract
In this work, Morse potential parameters of bcc crystals have been calculated based on the calculation of volume per atom and atomic number in each elementary cell, as well as the energy of sublimation, the compressibility and the lattice constant. They are used for studying the anharmonic interatomic effective potential, local force constant in XAFS (X-ray Absorption Fine Structure) theory. Numerical results for Fe, W and Mo are found to be in good agreement with experiment and with those of other theories.
Keywords: Morse potential parameter, effective potential, local force constant, bcc crystals.
References
[1] P. M. Morse, Phys. Rev. B. 34 (1929) 57.
[2] L. A. Girifalco and V. G. Weizer, Phys. Rev. 114 (1959) 687.
[3] E. C. Marques, D. R. Sandrom, F. W. Lytle, R. B. Greegor, J. Chem. Phys. 77 (1982) 1027.
[4] E. A. Stern, P. Livins, and Z. Zhang, Phys. Rev. B 43 (1991) 8550.
[5] T. Miyanaga and T. Fujikawa, J. Phys. Soc. Jpn. 63 (1994) 1036 and 3683.
[6] T. Yokoyama, K. Kobayashi, and T. Ohta, Phys. Rev. B 53 (1996) 6111.
[7] N. V. Hung and R. Frahm, Physica B 208-209 (1995) 91.
[8] N. V. Hung, R. Frahm, and H. Kamitsubo, J. Phys. Soc. Jpn. 65 (1996) 3571.
[9] N. V. Hung, J. de Physique IV (1997) C2 : 279.
[10] N. V. Hung and J. J. Rehr, Phys. Rev. B 56 (1997) 43.
[11] N. V. Hung, N. B. Duc, and R. Frahm, J. Phys. Soc. Jpn. 72 (2003) 1254.
[12] N. V. Hung, N. B. Trung, and B. Kirchner: Physica B 405 (2010) 2519.
[13] N. V. Hung, C. S. Thang, N. C. Toan, H. K. Hieu, Vacuum 101 (2014) 63.
[14] N. V. Hung, J. Phys. Soc. Jpn. 83 (2014) 024802.
[15] N. V. Hung, T. S. Tien, N. B. Duc, and D. Q. Vuong, Mod. Phys. Lett. B 28 (2014) 1450174.
[16] I. V. Pirog, I. I. Nedosekina, I. A. Zarubin, and A. T. Shuvaev, J. Phys.: Condens. Matter 14 (2002) 1825.
[17] I. V. Pirog and T. I. Nedosekina, Physica B 334 (2003) 123.
[18] N. V. Hung, Commun. in Phys. 14 (2004) 7.
[19] Charl. Kittel, Introduction to Solid-State Physics, John Wiley & Sons ed., Inc. New York, Chichester, Brisbane, Toronto, Singapore (1986).
[20] J. C. Slater, Introduction to Chemical Physics (McGraw-Hill Book Company, Inc., New York, 1939).
[21] Handbook of Physical Constants, Sydney P. Clark, Jr., editor published by the society, 1996.
[2] L. A. Girifalco and V. G. Weizer, Phys. Rev. 114 (1959) 687.
[3] E. C. Marques, D. R. Sandrom, F. W. Lytle, R. B. Greegor, J. Chem. Phys. 77 (1982) 1027.
[4] E. A. Stern, P. Livins, and Z. Zhang, Phys. Rev. B 43 (1991) 8550.
[5] T. Miyanaga and T. Fujikawa, J. Phys. Soc. Jpn. 63 (1994) 1036 and 3683.
[6] T. Yokoyama, K. Kobayashi, and T. Ohta, Phys. Rev. B 53 (1996) 6111.
[7] N. V. Hung and R. Frahm, Physica B 208-209 (1995) 91.
[8] N. V. Hung, R. Frahm, and H. Kamitsubo, J. Phys. Soc. Jpn. 65 (1996) 3571.
[9] N. V. Hung, J. de Physique IV (1997) C2 : 279.
[10] N. V. Hung and J. J. Rehr, Phys. Rev. B 56 (1997) 43.
[11] N. V. Hung, N. B. Duc, and R. Frahm, J. Phys. Soc. Jpn. 72 (2003) 1254.
[12] N. V. Hung, N. B. Trung, and B. Kirchner: Physica B 405 (2010) 2519.
[13] N. V. Hung, C. S. Thang, N. C. Toan, H. K. Hieu, Vacuum 101 (2014) 63.
[14] N. V. Hung, J. Phys. Soc. Jpn. 83 (2014) 024802.
[15] N. V. Hung, T. S. Tien, N. B. Duc, and D. Q. Vuong, Mod. Phys. Lett. B 28 (2014) 1450174.
[16] I. V. Pirog, I. I. Nedosekina, I. A. Zarubin, and A. T. Shuvaev, J. Phys.: Condens. Matter 14 (2002) 1825.
[17] I. V. Pirog and T. I. Nedosekina, Physica B 334 (2003) 123.
[18] N. V. Hung, Commun. in Phys. 14 (2004) 7.
[19] Charl. Kittel, Introduction to Solid-State Physics, John Wiley & Sons ed., Inc. New York, Chichester, Brisbane, Toronto, Singapore (1986).
[20] J. C. Slater, Introduction to Chemical Physics (McGraw-Hill Book Company, Inc., New York, 1939).
[21] Handbook of Physical Constants, Sydney P. Clark, Jr., editor published by the society, 1996.