Luong Duy Thanh, Rudolf Sprik

Main Article Content

Abstract

Electrokinetic phenomena are induced by the relative motion between a fluid and a solid surface and are directly related to the existence of an electric double layer between the fluid and the solid grain surface. Electrokinetics in porous media plays an important role in geophysical applications and environmental applications. The zeta potential is one of the key parameters in electrokinetics. The zeta potential of liquid-rock systems depends on many parameters such as mineral composition of rocks, fluid properties etc. Therefore, the zeta potential is different for various rocks and liquids. In order to measure the zeta potential for fluid saturated porous rocks, streaming potential measurements have been carried out for 8 consolidated samples including natural and artificial rocks saturated with 7 different NaCl solutions. The measured zeta potential is then compared to previously published data for silica-based rocks. The comparison shows that the zeta potential is in good agreement with the experimental data reported in the literature. The results also indicate that the zeta potential depends not only on the electrolyte concentration but also on types of rock.

Keywords: Streaming potential, zeta potential, electroosmosis, porous media, rocks.

References

[1] L. Jouniaux, T. Ishido, International Journal of Geophysics (2012).
[2] B. Wurmstich, F. D. Morgan, Geophysics 59 (1994) 46–56.
[3] R. F. Corwin, D. B. Hoovert, Geophysics 44 (1979) 226–245.
[4] F. D. Morgan, E. R. Williams, T. R. Madden, Journal of Geophysical Research 94 (1989) 12.449–12.461.
[5] A. Revil, P. A. Pezard, Geophysical Research Letters 25 (1998) 3197– 3200.
[6] H. Mizutani, T. Ishido, T. Yokokura, S. Ohnishi, Geophys. Res. Lett. 3 (1976).
[7] M. Trique, P. Richon, F. Perrier, J. P. Avouac, J. C. Sabroux, Nature (1999) 137–141.
[8] A. A. Ogilvy, M. A. Ayed, V. A. Bogoslovsky, Geophysical Prospecting 17 (1969) 36–62.
[9] A. Thompson, S. Hornbostel, J. Burns, et al., SEG Technical Program Expanded Abstracts (2005).
[10] S. Haines, A. Guitton, B. Biondi, Geophysics 72 (2007) G1–G8.
[11] M. Strahser, L. Jouniaux, P. Sailhac, P. Matthey, M. Zillmer, Geophysical Journal International 187 (2011) 1378–1392.
[12] S. Garambois, M. Dietrich, Geophysics 66 (2001) 1417–1430.
[13] T. Paillat, E. Moreau, P.O.Grimaud, G. Touchard, IEEE Transactions on Dielectrics and Electrical Insulation 7 (2000) 693–704.
[14] C. Cameselle, K. R. Reddy, Electrochimica Acta 86 (2012) 10–22.
[15] C. Cameselle, S. Gouveia, D. E. Akretche, B. Belhadj, Organic Pollutants - Monitoring, Risk and Treatment, InTech, 2013.
[16] M. Ashraf, S. Tayyaba, N. Afzulpurkar, International Journal of Molecular Sciences 12 (2011) 3648–3704.
[17] B. J. Kirby, E. J. Hasselbrink, Electrophoresis 25 (2004) 187–202.
[18] O. Stern, Z. Elektrochem 30 (1924) 508–516.
[19] T. Ishido, H. Mizutani, Journal of Geophysical Research 86 (1981) 1763– 1775.
[20] H. M. Jacob, B. Subirm, Electrokinetic and Colloid Transport Phenomena, Wiley-Interscience, 2006.
[21] K. E. Butler, Seismoelectric effects of electrokinetic origin, PhD thesis, University of British Columbia, 1996.
[22] H. Hase, T. Ishido, S. Takakura, T. Hashimoto, K. Sato, Y. Tanaka, Geophysical Research Letters 30 (2003) 3197–3200.
[23] R. J. Hunter, Zeta Potential in Colloid Science, Academic, New York, 1981.
[24] B. Nourbehecht, Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectric problems, Ph.D. thesis, MIT Press, Cambridge, Mass, USA, 1963.
[25] A. Boleve, A. Crespy, A. Revil, F. Janod, J. L. Mattiuzzo, J. Geophys. Res. B08204 (2007).
[26] S. Dukhin, V. Shilov, Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes, John Wiley and Sons, New York, 1974.
[27] J. Davis, R. James, J. Leckie, Journal of Colloid and Interface Science 63 (1978).
[28] L. Jouniaux, M. L. Bernard, M. Zamora, J. P. Pozzi, Journal of Geophysical Research B 105 (2000) 8391–8401.
[29] P. Churcher, P. French, J. Shaw, L. Schramm, SPE International Symposium (1991).
[30] A. Pagoulatos, Evaluation of multistage Triaxial Testing on Berea sandstone, Degree of Master of Science, Oklahoma, 2004.
[31] A. A. Tchistiakov, Proceedings World Geothermal Congress (2000).
[32] D. Luong, R. Sprik, International Journal of Geophysics Article ID 471819 (2014).
[33] D. T. Luong, R. Sprik, Geophysical Prospecting (2015), accepted for publication.
[34] P. W. J. Glover, E. Walker, M. Jackson, Geophysics 77 (2012) D17–D43.
[35] P. Leroy, N. Devau, A. Revil, M. Bizi, Journal of Colloid and Interface Science 410 (2013).
[36] M. Z. Jaafar, J. Vinogradov, M. D. Jackson, Geophysical Research Letters 36 (2009) doi:10.1029/2009GL040549.
[37] J. Vinogradov, M. Z. Jaafar, M. D. Jackson, Journal of Geophysical Research 115 (2010) doi:10.1029/2010JB007593.
[38] V. Allegre, L. Jouniaux, F. Lehmann, P. Sailhac, Geophysical Journal International 182 (2010) 1248–1266.
[39] L. Jouniaux, Electrokinetic techniques for the determination of hydraulic conductivity in Hydraulic Conductivity - Issues, Determination and Applications, L. Elango, Ed., InTech, 2011