Do Quoc Hung, Nguyen Kim Thanh

Main Article Content

Abstract

Abstract. In this article, the authors describe the method for preparation of NiFe2O4 – TiO2 magnetic nanoparticles and present the results on study of their photocatalytic activity. NiFe2O4 nanoparticles have been prepared by coprecipitation using spraying technique with subsequent hydrothermal processing. NiFe2O4-TiO2 composite nanoparticles were prepared by covering thin films of TiO2 on the surface of NiFe2O4 particles using sol – gel technique. Different techniques such as XRD, TEM, SEM  were used to characterize NiFe2O4 and NiFe2O4 – TiO2 composite nanoparticles obtained from the mentioned procedure. It is shown that prepared NiFe2O4 – TiO2 nanoparticles are particles of a composite material which consists of trevorite NiFe2O4 and anatase TiO2 phases. TEM study has showed that the particles size is of about 20nm. The VSM measurement has demonstrated that nickel ferrite nanoparticles and NiFe2O4 – TiO2  composite nanoparticles are superparamagnetic with saturation magnetization (Ms) of about 40 emu/g and 20 emu/g, respectively; remanences (Mr) and coercive forces (Hc) being near to zero for both the materials. The composite NiFe2O4 - TiO2 nanoparticles are used to degrade methyl orange dye. After 14 hours, methyl orange with the initial concentration of 10-4M is degraded 98,2%. Thanks to magnetic properties, the nanocomposite photocatalyst NiFe2O4 - TiO2 can be easily collected for reuse.

Keywords: Magnetic nanoparticles, superparamagnetism, NiFe2O4-TiOnanocomposite,

References

[1] D.H. Han, H.L. Luo, Z. Yang, J. Magn. Magn. Mater., 161, 376 (1996).
[2] R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G.Souza, E. Longo, Mater. Res. Bull., 41, 183 (2006).
[3] N.Iftimie, E. Rezlescu, P.D.Popa et al, Journal optoelectronics and advance materials. Vol. 8, No. 3, 1016 (2006).
[4] U. Lueders, A. Bathelemy, M. Bibes et al, http://arxiv.org/abs/cond-mat/0508764.
[5] Hoffmann M.R, Martin S.T, Choi W, Bahnemann D.W, Chem. Rev., 95, 69 (1995).
[6] Zhao J.C., Wu T.X., Wu K.Q., Oikawa K., Hidaka H., Serpone N., Environ. Sci. Technol., 32, 2394 (1998).
[7] Jiye Fang, Narayan Shama, Le Duc Tung et al, Journal of applied physics, Vol. 93, N.10,7483 (2003).
[8] Santi Maensiri, Chivalrat Masingboon, Banjong Boonchom et al, Scripta Materialia, 56, 797 (2007).
[9] Xu Sh., Shangguan W., Yuan N., Chen M. and Shi J., Chin. J. Chem. Eng, 15(2), 190 (2007).
[10] M.N.Rashed, A.A.El-Amin, International Journal of Physical Sciences, Vol. 2 (3), 073, March, (2007).
[11] Do Quoc Hung, Dang Thi An, Advances in Natural Sciences, Vol 8, No 3&4, 469 (2007).
[12] A.R. Khataee, M.B. Kasiri, Journal of Molecular Catalysis A: Chemical, 328 pp. 8-26 (2010)
[13] Augugliaro V, Baiocchi C, Bianco Prevot A, et al, Chemosphere 49(10): 1223-1230 (2002).