Nguyen Tien Cuong, Nguyen Manh Tien

Main Article Content

Abstract

Abstract: We present first-principles studies of CO2 and NH3 adsorbed on graphene nanoribbons (GNRs). The electronic and transport properties are calculated based on density functional theory combined with non-equilibrium Green's function method. Absorption energy, density of states, electron density deformation, charge transfer, current-voltage characteristics, and transmission spectra were analyzed. It is found that CO2 and NH3 adsorbed on GNRs exhibit acceptor-like and donor-like behaviors, respectively. Both CO2 and NH3 molecules show physissorption on GNRs with low adsorption energies and small charge transfers. In other words, the interactions between CO2 and NH3 molecules and GRNs are very weak. The results suggest that the sensitivity and selectivity of GRN-based gas sensors could be improved by introducing the dopant, defect, or modification of electronic structures of graphene.

Keywords: First-principles, Graphene Nanoribbons, CO2 Adsorbed on Graphene, NH3 Adsorbed on Graphene.

References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science 306, (2004) 666-669
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene”, Nature 438, (2005) 197-200
[3] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer”, Phys. Rev. Lett. 100, (2008) 016602
[4] A. K. Geim, and S. V. Morozov, “The Rise of Graphene”, Nature Materials 6, (2007) 183-191
[5] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nature Materials 6, (2007) 652-655
[6] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Ji, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science 312, (2006) 1191-1196
[7] Melinda Y. Han, Barbaros Ozyilmaz, Yuanbo Zhang, and Philip Kim, “Energy Band-Gap Engineering of Graphene Nanoribbons” ,Phys. Rev. Lett. 98, (2007) 206805
[8] Nima Kalhor, Stuart A. Boden, and Hiroshi Mizuta, “Sub-10 nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices”, Microelectronic Engineering 114 (2014) 70-77
[9] O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study”, Phys. Rev. Lett. 77, (2008) 125416
[10] H. E. Romero, P, Joshi, A. K. Gupta, H.R. Gutierrez, M. W. Cole, S. A. Tadigadapa, P. C. Eklund, “Adsorption of ammonia on graphene”, Nanotechnology 20, (2009) 245501-245509.
[11] A. K. Mishra and S. Ramaprabhu, “Carbon dioxide adsorption in graphene sheets”, AIP Advances 1, (2011) 032152
[12] http://accelrys.com/products/collaborative-science/biovia-materials-studio/
[13] http://www.openmx-square.org/
[14] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett. 77, (1996) 3865
[15] B. Huang,Z. Li, Z. Liu, G. Zhou,S. Hao,J. Wu,B.-L. Gu, and W. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor”, J. Phys. Chem. C. 112 (2008) 13442-13446