Tran Thanh Tuyen, Nguyen Van Khanh, Nguyen Van Thuy, Vu Van Quyen, Nguyen The Toan

Main Article Content

Abstract

Abstract: The problem of RNA genomes packaged inside spherical viruses is studied. The viral capsid is modeled as a hollowed sphere. The attraction between RNA molecules and the inner viral capsid is assumed to be non-specific and occurs at the inner capsid surface only. For small capsid attraction, it is found that monomer concentration of RNA molecules is maximal at the center of the capsid to maximize their configurational entropy. For stronger capsid attraction, RNA concentration peaks at some distance near the capsid. In the latter case, the competition between the branching of RNA secondary structure and its adsorption to the inner capsid results in the formation of a dense layer of RNA near capsid surface. The layer thickness is a slowly varying (logarithmic) function of the capsid inner radius. Consequently, for immediate strength of RNA-capsid interaction, the amount of RNA packaged inside a virus is proportional to the capsid area (or the number of proteins) instead of its volume. The numerical profiles describe reasonably well the experimentally observed RNA nucleotide concentration profiles of various viruses.

Keywords: RNA viruses, RNA condensation, viral RNA packaging, RNA structure.

References

[1] H. Tsuruta, V. S. Reddy, W. R. Wikoff, and J. E. Johnson, J. Mol. Biol. 284, 1439 (1998).
[2] J. Johnson and R. Rueckert, in Structural biology of viruses, edited by W. Chiu, R. M. Burnett, and R. L. Garcea (Oxford University Press, New York, 1997).
[3] J. Lidmar, L. Mirny, and D. R. Nelson, Phys. Rev. E 68, 051910 (2003).
[4] T. T. Nguyen, R. F. Bruinsma, and W. M. Gelbart, Phys. Rev. Lett. 96, 078102 (2006).
[5] T. Hu and B. I. Shklovskii, Phys. Rev. E 75, 051901(2007).
[6] T. Hu, R. Zhang, and B. I. Shklovskii, Physica A 387,3059 (2008).
[7] V. A. Belyi and M. Muthukumar, Proc. Nat. Acad. Sci. USA 103, 17174 (2006).
[8] J. Rudnick and R. F. Bruinsma, Phys. Rev. Lett. 94, 038101 (2005).
[9] P. van der Schoot and R. F. Bruinsma, Phys. Rev. E 71, 061928 (2005).
[10] D. G. Angelescu, P. Linse, T. T. Nguyen, and R. F. Bruinsma, Eur. Phys. J. E 25, 323 (2008).
[11] T. T. Nguyen, J. Biol. Phys. 39, 247 (2013).
[12] L. Javidpour, A. L. Boi, A. Naji, and R. Podgornik, J. Chem Phys. 139, 154709 (2013).
[13] L. Tang, K. N. Johnson, L. A. Ball, T. Lin, M. Yeager, and J. E. Johnson, Nat. Struct. Biol. 8, 77 (2001).
[14] T. T. Nguyen and R. F. Bruinsma, Phys. Rev. Lett. 97, 108102 (2006).
[15] T. C. Lubensky and J. Isaacson, Phys. Rev. A 20, 2130 (1979).
[16] S. I. Lee and T. T. Nguyen, Phys. Rev. Lett. 100, 198102 (2008).
[17] P.-G. de Gennes, Scaling concepts in Polymer physics (Cornell University Press, Ithaca and London, 1988).
[18] Landau, L. D., and E. M. Lifshitz. "Statistical physics, vol. 5." Course of theoretical physics” (1980).
[19] R. Holyst and A. Poniewierski, Phys. Rev. B 36, 5628 (1987).
[20] R. J. Kuhn, W. Zhang, M. G. Rossmann, S. V. Pletnev, J. Corver, E. Lenches, C. T. Jones, S. Mukhopadhyay, P. R. Chipman, E. G. Strauss, T. S. Baker, and J. H. Strauss, Cell 108, 717 (2002).
[21] B. Jacrot, C. Chauvin, and J. Witz, Nature 266, 417 (1977).