Magnetic Property and GMI Effect of MFe2O4 Nanoparticles
Main Article Content
Abstract
Abstract: In the present article, we report the biosensor can detect superparamagnetic nanoparticles (less than 10 nm in size) at various and low particle concentrations, which is of the importance role in biosensing applications. The nanoparticle ferrite (Fe3O4), Cobalt ferrite (CoFe2O4), Nickel ferrite (NiFe2O4) nanoparticles were synthesized by the high temperature thermal decomposition precursor method. The saturation of magnetization have significantly increased as the 12 ± 1 nm Fe3O4 (40 emu/g), 6 ± 0.5 nm NiFe2O4 (57 emu/g) and 7 ± 0.5 nm CoFe2O4 (88.6 emu/g) nanoparticles. The saturation magnetization of CoFe2O4 nanoparticle is larger than NiFe2O4, Fe3O4 nanoparticle. The sensitivity of biosensor depend on saturation magnetization of nano particles, thus we have performed a systematic study of the longitudinally excited magneto-inductance effect of an inductive coil with CoFe2O4 nanoparticles is in its core. Our results show that the ([DX/X]) ratios and field sensitivity increase. These results are of practical importance in designing novel magnetic sensors based on the LEMI effect for sensing applications.
References
[2] Andrzej Skumiel, Journal of Magnetism and Magnetic Materials 307 (2006) 85–90
[3] J. Devkota, T.T.T. Mai, K. Stojak, P.T. Hab, H.N. Phamb, X.P. Nguyen, P. Mukherjee,H. Srikanth, M.H. Phan, Sensors and Actuators B 190 (2014) 715– 722.
[4] V. Zhukova, M. Ipatov, and A. Zhukov, Sensors 9, 9216 (2009).
[5] A. Kumar, V. Fal-Miyar, J. A. Garcia, A. Cerdeira, S. Mohapatra, H. Srikanth, J. Gass, and G. V. Kurlyandskaya, Appl. Phys. Lett. 91, 143902 (2007).
[6] J. Devkota, C. Wang, A. Ruiz, S. Mohapatra, P. Mukherjee, H. Srikanth, and M. H. Phan, JOURNAL OF APPLIED PHYSICS 113, 104701 (2013).
[7] J. Devkota, A. Ruiz, P. Mukherjee, H. Srikanth, M. H. Phan, A. Zhukov, and V. S. Larin, J. Alloys Compd. 549, 295 (2013).
[8] L. Chen, C. C. Bao, H. Yang, D. Li, C. Lei, T. Wang, H. Y. Hu, M. He, Y. Zhou, and D. X. Cui, Biosens. Bioelectron. 26, 3246 (2011).
[9] J. Devkota, T. Luong, J. S. Liu, H. Shen, F. X. Qin, J. F. Sun, P. Mukherjee, H. Srikanth, and M. H. Phan, Journal of Applied Physics 116, 234504 (2014).
[10] Y. Geliang et al., “Design of a GMI magnetic sensor based on longitudinal excitation,” Sens. Actuators A: Phys., vol. 161, pp. 72–77, 2010.
[11] M. Malatek and P. Ripka, “Single-core giant magnetoimpedance with AC Bias,” in Proc. 5th IEEE Conf. Sensors, 2006, pp. 1012–1015.
[12] V. Zhukova et al., “GMI effect in ultra-thin glass-coated Co-rich amorphous wires,” Sens. Actuators B: Chem., vol. 126, pp. 232–234, 2007.
[13] Y.W. Rheem, C.G. Kim, C.O. Kim, S.S. Yoon, Sensors and Actuators A 106 (2003) 19–21.
[14] Yu-Jung Cha, Ki Hyeon Kim, Jong-Sik Shon, Young Ho Kim, and Jongryoul Kim, IEEE Transaction on magnetics, Vol. 44, No. 11, November 2008.
[15] Y. Zhuang, M. Vroubel, B. Rejaei, and J. N. Burghartz, Solid-State Electron. 51, 405 (2007).J.A.C.
[16] dePaiva, M.P.F. Graca, J. Monteiro, M.A.Macedo, M.A. Valente, 485 (2009) 637-641.
[17] S. Mornet , S. Vasseur , F. Grasset , P. Veverka , G. Goglio, A. Demourgues , J. Portier , E. Pollert , E. Duguet , Progress in Solid State Chemistry 34 (2006).
[18] Ajay Kumar Gupta, Mona Gupta, Biomaterials 26 (2005) 3995–4021.
[19] Geliang Yu, Xiongzhu Bu, Bo Yang, Yunlong Li, and Chao Xiang, IEEE Sensor Journal, Vol. 11, No. 10, October 2011.