Nguyen Viet Tuyen, Tran Thi Hai, Nguyen Thi Hong, Phan Thi Thanh Hong, Ho Khac Hieu

Main Article Content

Abstract

Abstract. The anharmonic correlated Debye model has been developed to investigate the pressure effects on the extended X-ray absorption fine structure (EXAFS) Debye-Waller factors of metals. The recent well-established Grüneisen parameter expressions have been applied to formulate the pressure-dependent analytical expressions of the effective spring constant, correlated Debye frequency and temperature. Combing with the anharmonic correlated Debye model, the expression of EXAFS Debye–Waller factor under pressure can be derived. Numerical calculations, performed for Fe and Cu metals show reasonable agreement with experiments.


 

Keywords: Keywords:EXAFS, Debye-Waller factors, Debye model, Anharmonicity, Pressure

References

G. Bunker, Application of the ratio method of EXAFS analysis to disordered systems, Nucl. Instruments Methods Phys. Res. 207 (1983) 437–444.
[2] R. Ingalls, G.A. Garcia, E.A. Stern, X-Ray Absorption at High Pressure, Phys. Rev. Lett. 40 (1978) 334–336.
[3] N. Van Hung, V. Van Hung, H.K. Hieu, R.R. Frahm, Pressure effects in DebyeWaller factors and in EXAFS, Phys. B Condens. Matter. 406 (2011) 456–460.
[4] N. Van Hung, N. Bao Trung, B. Kirchner, Anharmonic correlated Debye model Debye-Waller factors, Phys. B Condens. Matter. 405 (2010) 2519–2525.
[5] A.I. Frenkel, J.J. Rehr, Thermal expansion and x-ray-absorption fine-structure cumulants, Phys. Rev. B. 48 (1993) 585–588.
[6] H.K. Hieu, V.V. Hung, Pressure-dependent EXAFS mean-square relative displacements of germanium and silicon crystals, High Press. Res. 33 (2013) 768–776.
[7] R. Boehler, Melting temperature, adiabats, and Grüneisen parameter of lithium, sodium and potassium versus pressure, Phys. Rev. B. 27 (1983) 6754–6762.
[8] H.K. Hieu, Melting of solids under high pressure, Vacuum. 109 (2014) 184–186.
[9] L. Burakovsky, D.L. Preston, Analytic model of the Gr??neisen parameter all densities, J. Phys. Chem. Solids. 65 (2004) 1581–1587.
[10] H.K. Hieu, Volume and pressure-dependent thermodynamic properties of sodium, Vacuum. 120 (2015) 13–16.
[11] F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71 (1947) 809–824.
[12] W.B. Holzapfel, Equations of State for Ideal and Real Solids Under Strong Compression, Europhys. Lett. 16 (1991) 67–72.
[13] R.E. Cohen, O. Gülseren, R.J. Hemley, Accuracy of equation of state formulations, Russell J. Bertrand Russell Arch. (1999) 338–344.
[14] P. Vinet, J. Ferrante, J.H. Rose, J.R. Smith, Compressibility of solids, J. Geophys. Res. 92 (1987) 9319.
[15] L.A. Girifalco, V.G. Weizer, Application of the Morse Potential Function to Cubic Metals, Phys. Rev. 114 (1959) 687–690.
[16] D.H. Huang, X.R. Liu, L. Su, C.G. Shao, R. Jia, S.M. Hong, Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method, J. Phys. D. Appl. Phys. 40 (2007) 5327–5330.
[17] O.L. Anderson, L. Dubrovinsky, S.K. Saxena, T. LeBihan, Experimental vibrational Grüneisen ratio values for ϵ-iron up to 330 GPa at 300 K, Geophys. Res. Lett. 28 (2001) 399–402.
[18] J. Freund, R. Ingalls, E.D. Crozier, Extended x-ray-absorption fine-structure study of copper under high pressure, Phys. Rev. B. 43 (1991) 9894–9905.