Nghia Nguyen Van

Main Article Content

Abstract

We present an investigation of the morphology, structure, composition and optical properties of ZnS:Mn2+ microbelts grown by the thermal evaporation method using ZnS powder and MnCl2.4H2O powder as precursor materials. The SEM images of the products show that ZnS:Mn2+ microbelts are bigger and shorter than ZnS microbelts. EDS reveals that the composition of the microbelts include Zn, S, O, Mn and Cl elements. The atom rate of oxygen composition of the doped microbelts seem to be slightly lower than undoped ones. XRD pattern of the prepared microbelts shows that ZnO coexists with ZnS on the undoped microbelts. However, at the Mn-doped microbelts, the component phase of ZnO is disappeared. Photoluminescence spectra of undoped ZnS microbelts reveal a strong broad emission band at visible wavelength region and a weak ultraviolet band. Interestingly, when Mn2+ is doped into the microbelts, the visible emission band is separated into blue, green, and yellow bands peaking at around 442, 520 nm, and 572 nm, respectively. The effects of Mn2+ ions on the emission bands is discussed in detail.

Keywords: ZnS :Mn2 microbelts, photoluminescence, thermal evaporation.

References

[1] G. H. Yue et al., Hydrothermal synthesis of single-crystal ZnS nanowires, Appl. Phys. A Mater. Sci. Process., vol. 84, no. 4, (2006) 409.
[2] A. Goudarzi et al., Low-Temperature Growth of Nanocrystalline Mn-Doped ZnS Thin Films Prepared by Chemical Bath Deposition and Optical Properties, Chem. Mater., vol. 21, no. 12, (2009) 2375.
[3] W. W. G. Becker and A. A. J. Bard, Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions, J. Phys. Chem., vol. 78712, no. 24, (1983) 4888.
[4] T. T. Q. Hoa et al., Optical properties of Mn-doped ZnS semiconductor nanoclusters synthesized by a hydrothermal process, Opt. Mater. (Amst)., vol. 33, no. 3, (2011) 308.
[5] S. Wageh, Z. S. Ling, and X. Xu-Rong, Growth and optical properties of colloidal ZnS nanoparticles, J. Cryst. Growth, vol. 255, no. 3–4, (2003) 332.
[6] K. Sooklal, B. S. Cullum, S. M. Angel, and C. J. Murphy, Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn 2+, J. Phys. Chem., vol. 100, no. 11, (1996) 4551.
[7] S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, and D. D. Sarma, Emission properties of manganese-doped ZnS nanocrystals, J. Phys. Chem. B, vol. 109, no. 5, (2005) 1663.
[8] B. J. Ge, J. Wang, H. Zhang, X. Wang, Q. Peng, and Y. Li, Halide-Transport Chemical Vapor Deposition of Luminescent ZnS : Mn 2 + One-Dimensional Nanostructures, no. 2, (2005) 303.
[9] B. Y. Geng et al., Synthesis and photoluminescence properties of ZnMnS nanobelts, vol. 2157, (2004) 10.
[10] X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD / SiO 2 multilayer films, Nanotechnology, vol. 20, no. 48, (2009) 485703.
[11] W. Tang and D. C. Cameron, Electroluminescent zinc sulphide devices produced by sol-gel processing, Thin Solid Films, vol. 280, no. 1–2, (1996) 221.
[12] D. Q. Trung, N. Tu, N. D. Hung, and P. T. Huy, Probing the origin of green emission in 1D ZnS nanostructures, J. Lumin., vol. 169, (2016) 165.
[13] N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, Photophysical properties of ZnS nanoclusters, J. Appl. Phys., vol. 88, no. 11, (2000) 6260.
[14] John S. McCloy and Barrett G. Potter, Photoluminescence in Chemical Vapor Deposited ZnS: insight into electronic defects, OPTICAL MATERIALS EXPRESS, Vol. 3, No. 9, (2013) 1273.
[15] Ji-Hong Zhao, Chun-Hao Li, Jun-Jie Xu, Ya-Wei Hao, and Xian-Bin Li, Surface modification of nanostructured ZnS by femtosecond laser pulsing, Applied Surface Science 293 (2014) 332.
[16] H. Tang, B. J. Kwon, J. Kim, and J. Y. Park, Growth modes of ZnS nanostructures on the different substrates, J. Phys. Chem. C, vol. 114, no. 49, (2010) 21366.
[17] T. Mitsui, N. Yamamoto, T. Tadokoro, and S. Ohta, Cathodoluminescence image of defects and luminescence centers in ZnS/GaAs (100), J. Appl. Phys., vol. 80, no. 12, (1996) 6972.
[18] R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Optical Properties of Manganese-Doped of ZnS,” Phys. Rev. Lett., vol. 72, no. 3, (1994) 1.
[19] Jitao Li, Kuili Liu, Xinying Zhu, Ming Meng, Wei Qin, Quantao Liu, and Chunxiang Xu, Competitive mechanism of electron transition in Mn-doped ZnS nanoribbons, Journal of Alloys and Compounds 658 (2016) 616.
[20] H.J. Yuan, X.Q. Yan, Z.X. Zhang, D.F. Liu, Z.P. Zhou, L. Cao, J.X. Wang,Y. Gao, L. Song, L.F. Liu, X.W. Zhao, X.Y. Dou, W.Y. Zhou, and S.S. Xie, Synthesis, optical, andmagnetic properties of Zn1-xMnxS nanowires grown by thermal evaporation, Journal of Crystal Growth 271 (2004) 403.
[21] Ngo Xuan Dai, Do Thanh Long, Nguyen Ngoc Long, and Nguyen Thi Thuc Hien, Fabrication and Photoluminescence Properties of ZnS Nanoribbons and Nanowires, Journal of the Korean Physical Society, vol. 52, no. 5, (2008) 1530.