Luong Duy Thanh

Main Article Content


The streaming potential coefficient of liquid-rock systems is theoretically a very complicated function depending on many parameters including temperature, fluid concentration, fluid pH, as well as rock parameters such as porosity, grain size, pore size, and formation factor etc. At a given porous media, the most influencing parameter is the fluid conductivity or electrolyte concentration. Therefore, it is useful to have an empirical relation between the streaming potential coefficient and electrolyte concentration. In this work, the measurements of the streaming potential for four unconsolidated samples (sandpacks) saturated with four monovalent electrolytes at six different electrolyte concentrations have been performed. From the measured streaming potential coefficient, the empirical expression between the streaming potential coefficient and electrolyte concentration is obtained. The obtained expression is in good agreement with those available in literature. Additionally, it is seen that the streaming potential coefficient depends on types of cation in electrolytes and on samples. The dependence of the streaming potential coefficient on types of cation is qualitatively explained by the difference in the binding constant for cation adsorption on the silica surfaces. The dependence of the streaming potential coefficient on samples is due to the variation of effective conductivity and the zeta potential between samples.

Keywords: Streaming potential coefficient, zeta potential, porous media, sands


[1] B. Wurmstich, F. D. Morgan, Geophysics 59 (1994) 46–56.
[2] R. F. Corwin, D. B. Hoovert, Geophysics 44 (1979) 226–245.
[3] F. D. Morgan, E. R. Williams, T. R. Madden, Journal of Geophysical Research 94 (1989) 12.449–12.461.
[4] H. Mizutani, T. Ishido, T. Yokokura, S. Ohnishi, Geophys. Res. Lett. 3 (1976).
[5] M. Trique, P. Richon, F. Perrier, J. P. Avouac, J. C. Sabroux, Nature (1999) 137–141.
[6] A. A. Ogilvy, M. A. Ayed, V. A. Bogoslovsky, Geophysical Prospecting 17 (1969) 36–62.
[7] P. W. J. Glover, E. Walker, and M. D. Jackson, Geophysics 77 (2012) D17–D43.
[8] L. Jouniaux and T. Ishido, International Journal of Geophysics, vol. 2012, Article ID 286107, 16 pages, 2012. doi:10.1155/2012/286107.
[9] Vinogradov, J., M. Z. Jaafar, and M. D. Jackson, Journal of Geophysical Research Atmospheres 115 (2010) B12204.
[10] O. Stern, Z. Elektrochem 30 (1924) 508–516.
[11] T. Ishido, H. Mizutani, Journal of Geophysical Research 86 (1981) 1763– 1775.
[12] H. M. Jacob, B. Subirm, Electrokinetic and Colloid Transport Phenomena, Wiley-Interscience, 2006.
[13] K. E. Butler, Seismoelectric effects of electrokinetic origin, PhD thesis, University of British Columbia, 1996.
[14] H. Hase, T. Ishido, S. Takakura, T. Hashimoto, K. Sato, Y. Tanaka, Geophysical Research Letters 30 (2003) 3197–3200.
[15] R. J. Hunter, Zeta Potential in Colloid Science, Academic, New York, 1981.
[16] L. Onsager, Physical Review 37 (1931) 405-426.
[17] S. Dukhin, V. Shilov, Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes, John Wiley and Sons, New York, 1974.
[18] L. Jouniaux, M. L. Bernard, M. Zamora, J. P. Pozzi, Journal of Geophysical Research B 105 (2000) 8391–8401.
[19] Luong Duy Thanh, Rudolf Sprik, VNU Journal of Science: Mathematics-Physics 32 (2016) 22-33.
[20] Paul W. Glover and Nicholas Déry. Geophysics 75(2010), F225-F241.
[21] S. F. Alkafeef and A. F. Alajmi, Colloids and Surfaces A 289 (2006) 141–148.
[22] P. N. Sen, C. Scala, and M. H. Cohen, Geophysics 46 (1981) 781–795.
[23] Lưong Duy Thanh, Rudolf Sprik, VNU Journal of Science: Mathematics and Physics 31 (2015) 56-65.
[24] Luong Duy Thanh and Rudolf Sprik (2016). “Zeta potential in porous rocks in contact with monovalent and divalent electrolyte aqueous solutions” geophysics, 81(4), D303-D314.
[25] P. N. Sen and P. A. Goode, Geophysics 57 (1992) 89-96.