First-principles calculations on electronic properties of LaNiO3 in solid oxide fuel cell cathodes
Main Article Content
Abstract
First-principles calculations based on the density functional theory are used to study the electronic structure of LaNiO3 perovskite for application of cathode material in solid oxide fuel cell. Our results show that bulk LaNiO3 exhibits metallic behavior. For 1x1x1 LaNiO3 unit cell, increasing in-plane strain leads to the increase in the density of states (DOS) at the Fermi level. On the other hand, the DOS at the Fermi level for 2x2x2 LaNiO3 supercell first increases with the strain up to 3% and then decreases for larger values of the strain. The difference between the electronic structure of the 2x2x2 supercell and that of the 1x1x1 unit cell is attributed to the rotations of NiO6 octahedra.
References
S. B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes”, Chem. Rev. 104, 4791 (2004).
[2] M. L. Medarde, “Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth)”, J. Phys.: Condens. Matter 9, 1679 (1997).
[3] J.-S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Klamut, and Z. Bukowski, “Enhanced susceptibility in LNiO3 perovskites (L=La,Pr,Nd,Nd0.5 Sm0.5)”, Phys. Rev. Lett. 84, 526 (2000).
[4] J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, “Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap”, Phys. Rev. B 45, 8209(R) (1992).
[5] J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, and J. B. Torrance, “Neutron-diffraction study of RNiO3 (R=La,Pr,Nd,Sm): Electronically induced structural changes across the metal-insulator transition”, Phys. Rev. B 46, 4414 (1992).
[6] S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, “Quantifying octahedral rotations in strained perovskite oxide films”, Phys. Rev. B 82, 014110 (2010).
[7] A. E. Mattsson, P. A. Schultz, M. P. Desjarlais, T. R. Mattsson, and K. Leung, “Designing meaningful density functional theory calculations in materials science-a primer”, Modell. Simul. Mater. Sci. Eng. 13, R1 (2005).
[8] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comp. Mater. Sci. 6, 15 (1996).
[9] P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.”, J. Phys.: Condens. Matter 21, 395502 (2009).
[10] J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B 23, 5048 (1981).
[11] K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, “Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics”, Phys. Rev. B 43, 6796 (1991).
[12] A. Yu. Dobin, K. R. Nikolaev, I. N. Krivorotov, R. M. Wentzcovitch, E. Dan Dahlberg, and A. M. Goldman, “Electronic and crystal structure of fully strained LaNiO3 films”, Phys. Rev. B 68, 113408 (2003).
[13] J. Zhu, L. Zheng, Y. Zhang, X. H. Wei, W. B. Luo, and Y. R. Li, “Fabrication of epitaxial conductive LaNiO3 films on different substrates by pulsed laser ablation”, Mater. Chem. Phys. 100, 451 (2006).
[14] J. Yu, X. J. Meng, J. L. Sun, Z. M. Huang, and J. H. Chu, “Optical and electrical properties of highly (100)-oriented PbZr1−xTixO3 thin films on the LaNiO3 buffer layer”, J. Appl. Phys. 96, 2792 (2004).
[15] A. van de Walle and G. Ceder, “Correcting overbinding in local-density-approximation calculations”, Phys. Rev. B 59, 14992 (1999).
[16] P. Haas, F. Tran, and P. Blaha, “Calculation of the lattice constant of solids with semilocal functionals”, Phys. Rev. B 79, 085104 (2009).
[17] Š. Masys, S. Mickevičius, S. Grebinskij, and V. Jonauskas, “Electronic structure of LaNiO3−x thin films studied by X-ray photoelectron spectroscopy and density functional theory”, Phys. Rev. B 82, 165120 (2010).
[18] L. Guan, B. Liu, L. Jin, J. Guo, Q. Zhao, Y. Wang, G. Fu, “Electronic structure and optical properties of LaNiO3: First-principles calculations”, Solid State Commun., 150, 2011 (2010).
[19] K. P. Rajeev, G. V. Shivashankar, A. K. Raychaudhuri, “Low-temperature electronic properties of a normal conducting perovskite oxide (LaNiO3)”, Solid State Commun., 79, 591 (1991).
[2] M. L. Medarde, “Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth)”, J. Phys.: Condens. Matter 9, 1679 (1997).
[3] J.-S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Klamut, and Z. Bukowski, “Enhanced susceptibility in LNiO3 perovskites (L=La,Pr,Nd,Nd0.5 Sm0.5)”, Phys. Rev. Lett. 84, 526 (2000).
[4] J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, “Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap”, Phys. Rev. B 45, 8209(R) (1992).
[5] J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, and J. B. Torrance, “Neutron-diffraction study of RNiO3 (R=La,Pr,Nd,Sm): Electronically induced structural changes across the metal-insulator transition”, Phys. Rev. B 46, 4414 (1992).
[6] S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, “Quantifying octahedral rotations in strained perovskite oxide films”, Phys. Rev. B 82, 014110 (2010).
[7] A. E. Mattsson, P. A. Schultz, M. P. Desjarlais, T. R. Mattsson, and K. Leung, “Designing meaningful density functional theory calculations in materials science-a primer”, Modell. Simul. Mater. Sci. Eng. 13, R1 (2005).
[8] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comp. Mater. Sci. 6, 15 (1996).
[9] P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.”, J. Phys.: Condens. Matter 21, 395502 (2009).
[10] J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B 23, 5048 (1981).
[11] K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, “Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics”, Phys. Rev. B 43, 6796 (1991).
[12] A. Yu. Dobin, K. R. Nikolaev, I. N. Krivorotov, R. M. Wentzcovitch, E. Dan Dahlberg, and A. M. Goldman, “Electronic and crystal structure of fully strained LaNiO3 films”, Phys. Rev. B 68, 113408 (2003).
[13] J. Zhu, L. Zheng, Y. Zhang, X. H. Wei, W. B. Luo, and Y. R. Li, “Fabrication of epitaxial conductive LaNiO3 films on different substrates by pulsed laser ablation”, Mater. Chem. Phys. 100, 451 (2006).
[14] J. Yu, X. J. Meng, J. L. Sun, Z. M. Huang, and J. H. Chu, “Optical and electrical properties of highly (100)-oriented PbZr1−xTixO3 thin films on the LaNiO3 buffer layer”, J. Appl. Phys. 96, 2792 (2004).
[15] A. van de Walle and G. Ceder, “Correcting overbinding in local-density-approximation calculations”, Phys. Rev. B 59, 14992 (1999).
[16] P. Haas, F. Tran, and P. Blaha, “Calculation of the lattice constant of solids with semilocal functionals”, Phys. Rev. B 79, 085104 (2009).
[17] Š. Masys, S. Mickevičius, S. Grebinskij, and V. Jonauskas, “Electronic structure of LaNiO3−x thin films studied by X-ray photoelectron spectroscopy and density functional theory”, Phys. Rev. B 82, 165120 (2010).
[18] L. Guan, B. Liu, L. Jin, J. Guo, Q. Zhao, Y. Wang, G. Fu, “Electronic structure and optical properties of LaNiO3: First-principles calculations”, Solid State Commun., 150, 2011 (2010).
[19] K. P. Rajeev, G. V. Shivashankar, A. K. Raychaudhuri, “Low-temperature electronic properties of a normal conducting perovskite oxide (LaNiO3)”, Solid State Commun., 79, 591 (1991).