Doanh Sai Cong, Pham Nguyen Hai, Ngac An Bang

Main Article Content

Abstract

Cuprous oxide (Cu2O) and Au-Cu2O core-shell nanoparticles were successfully synthesized using the chemical reduction method. The morphology of the synthesized pure Cu2Oparticles can be controlled by varying the amount of reducing agent NH2OH.HCl. Due to their similar crystal structure and relatively small lattice mismatch Cu2O particles are nucleated and locally undergo an epitaxial growth on the surface of the multi-faceted Au seed resulting in a stellated icosahedra Au-Cu2O core-shell particle. The extinction spectrum of Cu2O particles offew hundred-nm in size is dominated by light scattering, while that of the stellated icosahedra Au-Cu2O core-shell particles exhibits the interband absorption of the Cu2O shell only. The interband absorption peak undergoes a blue shift as the shell gets thinner. No prominent SPR of the Au nanocore was observed due to a rather thick Cu2O shell.

Keywords: Cu2O nanoparticle, Au-Cu2O core-shell nanoparticle, Surface Plasmon Resonance (SPR).

References

[1] C. H.Kuo, M. H. Huang, Morphologically controlled synthesis of Cu2O nanocrystals and their properties, Nano Today, 5, 2010, pp. 106 – 116.
[2] H. Zhang, C.Shen, S. Chen, Z. Xu, F. Liu, J. Li and H. Gao, Morphologies and microstructures of
nano-sized Cu2O particles using a cetyltrimethylammonium template, Nanotechnology, 16, 2005, pp. 267–272.
[3] Y. H. Won and L. A. Stanciu, Cu2O and Au/Cu2O Particles: Surface Properties and Applications in Glucose Sensing, Sensors,12, 2012, pp. 13020 – 13033.
[4] M. Basu, A. K. Sinha, M. Pradhan, S. Sarkar, A. Pal, C.Mondal, and T. Pal, Methylene Blue Cu2O Reaction Made Easy in Acidic Medium, J. Phys. Chem. C,116,2012, pp. 25741−25747.
[5] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, Cu2O as a photocatalyst for overall water splitting under visible lightIrradiation, Chem. Commun., 1998,pp. 357 - 358.
[6] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 2000, pp. 496 - 499.
[7] L. Gou, C. J.Murphy,Solution-Phase Synthesis of Cu2O Nanocubes,Nano. Lett.,volume 3, issue 2, 2003, pp. 231–234.
[8] Y. Zhong, Y. Li, S. Li, S. Fenga and Y. Zhang, Nonenzymatic hydrogen peroxide biosensor based on four different morphologies of cuprous oxide nanocrystals, RSC Adv., 4, 2014, pp. 40638 - 40642.
[9] N. A. Bang, P. T. Thom and H. N. Nhat, A comparative study of classical approaches to surface plasmon resonance of colloidal gold nanorods, Gold Bulletin, Volume 46, Issue 2, 2013, pp. 91–96.
[10] C. H. Kuo, T. E. Hua and M. H. Huang, Au Nanocrystal-Directed Growth of Au-Cu2O Core-Shell Heterostructures with Precise Morphological Control, J. Am. Chem. Soc. 131, 2009, pp. 17871-17878.
[11] W. C. Wang, L. M. Lyu and M. H. Huang, Investigation of the Effects of Polyhedral Gold NanocrystalMorphology and Facets on the Formation of Au-Cu2O Core-Shell Heterostructures, Chem. Mater., 23, 2011, pp. 2677–2684.
[12] K. H. Yang, S. C. Hsu and M. H. Huang, Facet-Dependent Optical and Photothermal Properties of Au@Ag-Cu2O Core-shell Nanocrystals, Chem. Mater., 28, 2016, pp. 5140 - 5146.
[13] L. Zhang, D. A. Blom and H. Wang, Au–Cu2O Core–Shell Nanoparticles: A Hybrid Metal Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties, Chem. Mater., 23 (20), 2011, pp. 4587–4598.
[14] Y. Pan, S. Deng, L. Polavarapu, N. Gao, P. Yuan, C. H. Sow and Q. H. Xu, Plasmon-enhanced photocatalytic properties of Cu2O nanowire–Au nanoparticle assemblies, Langmuir, 28, 2012, pp. 12304-12310.
[15] L. Zhang and H. Wang, Cuprous Oxide Nanoshells with Geometrically Tunable Optical Properties, ACS Nano, 5(4), 2011, pp. 3257–3267.