Trinh Bui Nguyen Quoc, Hoang Ha

Main Article Content

Abstract

PbZr0.4Ti0.6O3 (PZT) thin films have been conventionally fabricated on traditional silicon substrates with a platinum bottom electrode; however, as a consequence of unit cell mismatch, the films are difficult to form as an epitaxial-like growth. Hence, PZT films deposited on single-crystal niobium doped SrTiO3(111) substrates (Nb:STO) are promising to solve this issue thanks to the similar perovskite structure between PZT and STO. Essentially, Nb:STO material is a conductor, playing a part in both bottom electrode and epitaxial substrate. In this work, 200-nm-thick PZT films were successfully fabricated on Nb:STO substrates by a solution process. One obtained that PZT(111) peak started to appear on the Nb:STO substrate at a low annealing temperature of 450oC. Also, scanning electron microscopy observation shows smooth and homogeneous surface of PZT films on Nb:STO substrate with no grain boundary, which evidences for epitaxial-like growth of PZT thin films. Remnant polarization of 6 µC/cm2 and leakage current of 8×10-8 A were obtained at applied voltage of 5 V.

Keywords: PZT, Nb:STO, spin-coating, ferroelectric, FeRAM

References

1. G.D. Shilpa, K. Sreelakshmi, and M.G. Ananthaprasad, PZT thin film deposition techniques, properties and its application in ultrasonic MEMS sensors: a review, IOP Conf. Ser. Mater. Sci. Eng. 149 (2016), 012190.
2. D.H. Minh, N.V. Loi, N.H. Duc, and B.N.Q. Trinh, Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates, Journal of Science: Advanced Materials and Devices 1 (2016) 75–79.
3. G. Lu, H. Dong, J. Chen, and J. Cheng, Enhanced dielectric and ferroelectric properties of PZT thin films derived by an ethylene glycol modified sol-gel method, J. Sol-gel Sci. Technol. 82 (2017) 530–535.
4. M.V. Silibin, A.A. Dronov, S.A. Gavrilov, V.V. Smirnov, D.A. Kiselev, M.D. Malinkovich, and Y.N. Parkhomenko, PZT thin films synthesis by sol-gel method and study of local ferroelectric properties, Ferroelectrics 442 (2013) 95–100
5. C. Luo, G.Z. Cao, and I.Y. Shen, Development of a lead-zirconate-titanate (PZT) thin-film micro actuator probe for intracochlear applications, Sens. Actuators, A 201 (2013) 1–9.
6. K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, and K.J. Lee, High-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates, Adv. Mater. 16 (2014) 2514–2520.
7. I. Kanno, Piezoelectric MEMS for energy harvesting, J. Phys. Conf. Ser. 660 (2015) 012001.
8. W. Gong, J. F. Li, X. Chu, Z. Gui, and L. Li, Single-crystal Nb-doped Pb(Zr,Ti)O3 thin films on Nb-doped SrTiO3 wafers with different orientations, Appl. Phys. Lett. 85 (2004) 3818.
9. I. Szafraniak, C. Hamagea, R. Scholz, S. Bhattacgaryya, D. Hesse, and M. Alexe, Ferroelectric epitaxial nanocrystals obtained by a self-patterning method, Appl. Phys. Lett. 83 (2003) 2111.
10. K. Nashimoto, D. K. Fork, and G. B. Anderson, Solid phase epitaxial growth of sol‐gel derived Pb(Zr,Ti)O3 thin films on SrTiO3 and MgO, Appl. Phys. Lett. 66 (1995) 822.
11. W. Li, M. D. Rodriguez, P. Kluth, M. Lang, N. Medvedev, M. Sorokin, J. Zhang, B. Afra, M. Bender, D. Severin, C. Trautmann, and R. C. Ewing, Effect of doping on the radiation response of conductive Nb–SrTiO3, Nucl. Instr. And Meth. in Phys. Res. B 302 (2013) 40–47.
12. F. Aguesse, A. Exelsson, P. Reinhard, V. Tileli, J. L. M. Rupp, and N. M. Alford, High-temperature conductivity evaluation of Nb doped SrTiO3 thin films: Influence of strain and growth mechanism, Thin Solid Films 539 (2013) 384–390.
13. I. Velaso-Davalos, F. A. Vargas, R. Thomas, and A. Ruediger, Surface preparation of (110) oriented pure and Nb doped SrTiO3 single crystal substrates by microwave assisted hydrothermal method, Surface & Coatings Technology 283 (2015) 108–114.
14. Z. X. Zhu, J. F. Li, F. P. Lai, Y. Zhen, Y. H. Lin, C. W. Nan, L. Li, and J. Li, Phase structure of epitaxial Pb(Zr,Ti)O3 thin films on Nb-doped SrTiO3 substrates, Appl. Phys. Lett. 91 (2007) 222910.
15. Y. Luo, X. Li, L. Chang, W. Gao, G. Yuan, J. Yin, and Z. Liu, Upward ferroelectric self-poling in (001) oriented PbZr0.2¬Ti0.8O3 epitaxial films with compressive strain, AIP Advances 3 (2013), 122101.
16. B. He, and Z. Wang, Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices, ACS Appl. Mater. Interfaces 8 (2016) 6736–6742.
17. Z.-X. Duan, G.-Q. Yu, J.-B. Liu, J. Liu, X.-W. Dong, L. Han, and P.-Y. Jin, Preparation and characterization of PZT thick film enhanced by ZnO nanowhiskers for MEMS piezoelectric generators, Progress in Natural Science: Materials International 21 (2011) 159–163.
18. I.Y. Shen, G.Z. Cao, C.-C. Wu, and C.-C. Lee, PZT thin-film meso- and micro devices, Ferroelectrics 243 (2006) 15–34.
19. A. Shoghi, A. Shakeri, H. Abdizadeh, and M.R. Golobostanfard, Synthesis of crack-free PZT thin films by sol-gel processing on glass substrate, Procedia Materials Science 11 (2015) 386–390.
20. Y. Liu, K.H. Lam, K.K. Shung, J. Li, and Q. Zhou, Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezo response force microscopy, J. Appl. Phys. 113 (2013) 187205.
21. M. Xiao, S. Li, and Z. Lei, Study of (111)-oriented PZT thin films prepared by a modified sol-gel method, J. Mater. Sci. Mater. Electron 26 (2015) 4031–4037.
22. M. Khodaei, S.A.S. Ebrahimi, Y.J. Park, S. Song, H.M. Jang, J. Son, and S. Baik, (111)-oriented Pb(Zr0.52Ti0.48)O3 thin film on Pt(111)/Si substrate using CoFe2O4 nano-seed layer by pulsed laser deposition, J. Mater. Sci. Mater. Electron 24 (2013) 3736–3743.
23. Q. Yu, J. Li, and W. Sun, Composition-phase structure relationship and thickness-dependent ferroelectricity of rhombohedral phase in [111]-textured Nb-doped Pb(Zr,Ti)O3 thin films, Appl. Surf. Sci. 265 (2013) 334–338.
24. N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films, Physics Revision B 65 (2000) 219901.
25. H. Wen, X. Wang, C. Zhong, Like Shu, and L. Li, Epitaxial growth of sol-gel derived BiScO3–PbTiO3 thin film on Nb-doped SrTiO3 single crystal substrate, Appl. Phys. Lett. 90 (2007) 202902.
26. G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas, and J. T. Evans, Voltage offsets in (Pb,La)(Zr,Ti)O3 thin films, Appl. Phys. Lett. 66 (1995) 484.
27. D. M. Smyth, Charge motion in ferroelectric thin films, Ferroelectrics 116 (1991) 117.
28. T. Baiatu, R. Waser, and K. H. Hardtl, dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism, Journal of the American of Ceramic Society 73 (1990) 1663–1673.
29. D. Remiens, E. Cattan, C. Soyer, and T. Haccart, Piezoelectric properties of sputtered PZT films: influence of structure, microstructure, film thickness (Zr,Ti) ratio and Nb substitution, Materials Science of Semiconductor Process 5 (2002) 123–127.
30. T. Haccart, D. Remiens, and E. Cattan, Substitution of Nb doping on the structural, microstructural and electrical properties in PZT films, Thin Solid Films 423 (2003) 235–243.
31. H. Kuwabara, N. Menou, and H. Funakubo, Strain and in-plane orientation effects on the ferroelectricity of (111)-oriented tetragonal Pb(Zr0.35Ti0.65)O3 thin films prepared by metal organic chemical vapor deposition, Appl. Phys. Lett. 90 (2007) 222901.
32. Y. W. Soo, D. J. Kim, T. W. Noh, J. G. Yoon, and T. K, Song, Polarization switching kinetics of epitaxial Pb (Zr0.4Ti0.6)O3 thin films, Appl. Phys. Lett. 86 (2005) 092905.
33. A. Gruverman, B. J. Rodriguez, C. Dehoff, J. D. Waldrep, A. I. Kingon, R. J. Nemanich, and J. S. Cross, Direct studies of domain switching dynamics in thin film ferroelectric capacitors, Appl. Phys. Lett. 87 (2005) 082902.