Ngoc Hoang Van, Nhan Vu Nguyen, Vuong Quoc Dinh

Main Article Content

Abstract

Abstract - The photon - drag effect with electrons – acoustic phonon scattering in cylindrical quantum wire with an infinite potential is studied. With the appearance of the linearly polarized electromagnetic wave, the laser radiation field and the dc electric field, analytic expressions for the density of the direct current are calculated by the quantum kinetic equation. The dependence of the direct current density on the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave and the temperature of the system is obtained. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/AlGaAs. The difference of the density of the direct current in quantum wires from quantum well and bulk semiconductor is due to potential barrier and characteristic parameters of system. These results are for every temperature and are new results.

Keywords: – The photon – drag effect, the density of the direct current, cylindrical quantum wire, electrons – acoustic phonon, infinite potential.

References

[1] G. M. Shmelev, G. I. Tsurkan and É. M. Épshtein, “Photostumilated radioelectrical transverse effect in semiconductors”, Phys. Stat. Sol. B, Vol. 109 (1982) 53.
[2] N. Q. Bau and B. D. Hoi, “Influence of a strong electromagnetic wave (Laser radiation) on the Hall effect in quantum well with a parabolic potential”, J. Korean Phys. Soc, Vol. 60 (2012) 59.
[3] V. L. Malevich Izv, “High-frequency conductivity of semiconductors in a laser radiation field”, Radiophysics and quantum electronics, Vol. 20, Issue 1 (1977) 98.
[4] M. F. Kimmitt, C. R. Pidgeon, D. A. Jaroszynski, R. J. Bakker, A. F. G. Van Der Meer, and D. Oepts, “Infrared free electron laser measurement of the photon darg effect in P-Silicon”, Int. J. Infrared Millimeter Waves, vol 13, No 8 (1992) 1065.
[5] S. D. Ganichev, H. Ketterl, and W. Prettl, “Spin-dependent terahertz nonlinearities at inter-valance-band absorption in p-Ge”, Physica B 272 (1999) 464.
[6] G. M. Shmelev, L. A. Chaikovskii and N. Q. Bau, “HF conduction in semiconductors superlattices”, Sov. Phys. Tech. Semicond, Vol 12, No. 10 (1978) 1932.
[7] N. Q. Bau, D. M. Hung and L. T. Hung, “The influences of confined phonons on the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in doping superlattices”, PIER Letters, Vol. 15 (2010) 175.
[8] N. Q. Bau and D. M. Hung, “Calculating of the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in doping superlattices”, PIER B 25 (2010) 39.
[9] N. Q. Bau, D. M. Hung and N. B. Ngoc, “The nonlinear absorption coefficient of a strong electromagnetic wave caused by confined electrons in quantum wells”, J. Korean Phys. Soc 54 (2009) 765.
[10] B. D. Hung, N. V. Nhan, L. V. Tung, and N. Q. Bau, “Photostimulated quantum effects in quantum wells with a parabolic potential”, Proc. Natl. Conf. Theor. Phys, Vol 37 (2012) 168.
[11] S. V. Kryuchkov, E. I. Kukhar’ and E. S. Sivashova, “Radioelectric effect in a superlattice under the action of an elliptically polarized electromagnetic wave”, Physics of the Solid State, vol 50, No. 6 (2008) 1150.
[12] A. Grinberg and Luryi, “Theory of the photon - drag effect in a two-dimensional electron gas”, Phys. Rev. B 38 (1988) 87.