Ta Thi Thuy Huong, Pham Ngoc Thanh, Do Ngoc Son

Main Article Content

Abstract

Abstract: The capture and storage of gases for the applications of energy, environment, and biomedicine are closely related to the major concerns of the modern world about energy crisis, air pollution and global warming, and human’s health. Many materials and techniques have been developed to tackle these widespread issues, in which metal-organic frameworks (MOFs) – a new class of porous materials with exceptionally high surface areas – have emerged as the most promising candidate for the capture and storage of gases based on the adsorption of gases on the surface of MOFs. This article provides a short overview of the current status in the capture and storage of gases within the structure of MOFs.

Keywords: Metal – organic frameworks, gas storage, hydrogen, carbon dioxide, methane, nitric oxide.

References

[1] H.-C. Zhou, J. R. Long, and O. M. Yaghi, Introduction to Metal-Organic Frameworks, Chem. Rev. 112 (2012) 673.
[2] R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Younga, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, Potential applications of metal-organic frameworks, Coor. Chem. Rev. 253 (2009) 3042.
[3] H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402 (1999) 276.
[4] H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, and E. Choi, Ultrahigh Porosity in Metal-Organic Frameworks, Science 329 (2010) 424.
[5] A. R. Millward and O. M. Yaghi, Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature, J. Am. Chem. Soc. 127 (2005) 17998.
[6] O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. B. T. Nguyen, A. Ö. Yazaydin, and J. T. Hupp, Metal-organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 134 (2012) 15016.
[7] P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill and M. J. Styles, MOF positioning technology and device fabrication, Chem. Soc. Rev. 43 (2014) 5513.
[8] X. Ma, H. Yang, L. Yu, Y. Chen and Y. Li, Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation, Materials 7 (2014) 4431.
[9] J. García-Martínez, M. Johnson, J. Valla, K. Li and J. Y. Ying, Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance, Catal. Sci. Technol. 2 (2012) 987.
[10] P. T. S. Nam, V. H. L Phuong, N. T. Tung, Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst, Journal of Catalysis 306 (2013) 38.
[11] L. T. M. Hoang, L. H. Ngo, H. L. Nguyen, C. K. Nguyen, B. T. Nguyen, Q. T. Ton, H. K. D. Nguyen, K. E. Cordova, T. Truong, Azobenzene-Containing Metal-Organic Framework as an Efficient Heterogeneous Catalyst for Direct Amidation of Benzoic Acids: Synthesis of Bioactive Compounds, Chem. Commun. 51 (2015) 17132.
[12] Y.-B. Zhang, H. Furukawa, N. Ko, W. Nie, H. J. Park, S. Okajima, K. E. Cordova, H. Deng, J. Kim, and O. M. Yaghi, Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal-Organic Framework-177, J. Am. Chem. Soc. 137 (2015) 2641.
[13] P. T. K. Nguyen, H. T. D. Nguyen, H. Q. Pham, J. Kim, K. E. Cordova, and H. Furukawa, Synthesis and Selective CO2 Capture Properties of a Series of Hexatopic Linker–Based Metal-Organic Frameworks, Inorg. Chem. 54 (2015) 10065.
[14] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, and O. M. Yaghi, Hydrogen storage in microporous metal-organic frameworks, Science 300 (2003) 1127.
[15] O. Hüber, A. Glöss, M. Fichtner, and W. Klopper, On the interaction of di-hydrogen with aromatic systems, J. Phys. Chem. A 108 (2004) 3019.
[16] S. S. Han, J. L. Mendoza-Cortés, and W. A. Goddard, Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks, Chem. Soc. Rev. 38 (2009) 1460.
[17] T. Sagara, J. Klassen, and E. Ganz, Computational study of hydrogen binding by metal-organic framework-5, J. Chem. Phys. 121 (2004) 12543.
[18] Q. Yang and C. Zhong, Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks, J. Phys. Chem. B 109 (2005) 11862.
[19] G. Garberoglio, A. I. Skoulidas, and J. K. Johnson, Adsorption of gases in metal organic materials: Comparison of simulations and experiments, J. Phys. Chem. B 109 (2005) 13094.
[20] M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Hydrogen storage in metal-organic frameworks, Chem. Rev. 112 (2012) 782.
[21] L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353.
[22] J. L. C. Rowsell and O. M. Yaghi, Strategies for hydrogen storage in metal-organic frameworks, Angew. Chem. Int. Ed. 44 (2005) 4670.
[23] L. Pan, M. B. Sander, X. Huang, J. Li, M. R. Smith, E. W. Bittner, B. C. Bockrath, and J. K. Johnson, Microporous metal organic materials: Promising candidates as sorbents for hydrogen storage, J. Am. Chem. Soc.126 (2004) 1308.
[24] Y. Li, L. Xie, Y. Liu, R. Yang, and X. Li, Favorable hydrogen storage properties of M(HBTC)(4,4'-bipy).3DMF (M ) Ni and Co, Inorg. Chem. 47 (2008) 10372.
[25] B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, and W. Lin, Highly interpenetrated metal-organic frameworks for hydrogen storage, Angew. Chem., Int. Ed. 44 (2005) 72.
[26] Q.-R. Fang, G.-S. Zhu, M. Xue, Q.-L. Zhang, J.-Y. Sun, X.-D. Guo, S.-L. Qiu, S.-T. Xu, P. Wang, D.-J. Wang, and Y. Wei, Microporous metal-organic framework constructed from heptanuclear zinc carboxylate secondary building units, Chem.-Eur. J. 12 (2006) 3754.
[27] D. Yuan, D. Zhao, D. Sun, and H.-C. Zhou, An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity, Angew. Chem. Int. Ed. 49 (2010) 5357.
[28] K. Sumida, M. R. Hill, S. Horike, A. Dailly, and J. R. Long, Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4, J. Am. Chem. Soc. 131 (2009) 15120.
[29] M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, and J. R. Long, Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites, J. Am. Chem. Soc. 128 (2006) 16876.
[30] H. Chun, H. Jung, G. Koo, H. Jeong, and D.-K. Kim, Efficient hydrogen sorption in 8-connected MOFs based on trinuclear pinwheel motifs, Inorg. Chem. 47 (2008) 5355.
[31] Y. Li and R. T. Yang, Gas adsorption and storage in metal-organic framework MOF-177, Langmuir 23 (2007) 12937.
[32] Y. Wang, P. Cheng, J. Chen, D.-Z. Liao, and S.-P. Yan, A heterometallic porous material for hydrogen adsorption, Inorg. Chem. 46 (2007) 4530.
[33] H. J. Park, D.-W. Lim, W. S. Yang, and T.-R. Oh, and M. P. Suh, A highly porous metal-organic framework: Structural transformations of a guest-free MOF depending on activation method and temperature, Chem. Eur. J. 17 (2011) 7251.
[34] K. Sumida, C. M. Brown, Z. R. Herm, S. Chavan, S. Bordiga, and J. R. Long, Hydrogen storage properties and neutron scattering studies of Mg2(dobdc) – a metal-organic framework with open Mg2+ adsorption sites, Chem. Commun. 47 (2011) 1157.
[35] X.-S. Wang, S. Ma, K. Rauch, J. M. Simmons, D. Yuan, X. Wang, T. Yildirim, W. C. Cole, J. J. López, A. de Meijere, and H.-C. Zhou, Metal-organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes, Chem. Mater. 20 (2008) 3145.
[36] L. J. Murray, M. Dincă and J. R. Long, Hydrogen storage in metal–organic frameworks, Chem. Soc. Rev. 38 (2009) 1294.
[37] M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, and S. Kitagawa, Three-DimensionalFramework with Channeling Cavities for Small Molecules: {[M2(4,4'-bpy)3(NO3)4].xH2O}n (M = Co, Ni, Zn), Angew. Chem. Int . Ed. EngI. 36 (1997) 1725.
[38] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, and O. M. Yaghi, Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage, Science 295 (2002) 469.
[39] S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, and H-C. Zhou, Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake, J. Am. Chem. Soc. 130 (2008) 1012.
[40] H. Wu, W. Zhou, and T. Yildirim, High-Capacity Methane Storage in Metal-Organic Frameworks M2(dhtp): The Important Role of Open Metal Sites, J. Am. Chem. Soc. 131 (2009) 4995.
[41] S. Ma and H-C. Zhou, Gas storage in porous metal–organic frameworks for clean energy applications, Chem. Commun. 46 (2010) 44.
[42] Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, and T. Yildirim, Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges, J. Am. Chem. Soc. 135 (2013) 11887.
[43] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T-H. Bae, and J. R. Long, Carbon Dioxide Capture in Metal–Organic Frameworks, Chem. Rev. 112 (2012) 724.
[44] J. B. DeCoste and G. W. Peterson, Metal−Organic Frameworks for Air Purification of Toxic Chemicals, Chem. Rev. 114 (2014) 5695.
[45] J. Yu, Y. Ma, and P. B. Balbuena, Evaluation of the Impact of H2O, O2 and SO2 on Postcombustion CO2 Capture in Metal-Organic Frameworks, Langmuir 28 (2012) 8064.
[46] Y. Liu, Z. U. Wang, and H-C. Zhou, Recent advances in carbon dioxide capture with metal-organic frameworks, Greenhouse Gas Sci Technol. 2 (2012) 239.
[47] E. Dooris, C. A. McAnally, E. J. Cussen, A. R. Kennedy, and A. J. Fletcher, A Family of Nitrogen-Enriched Metal Organic Frameworks with CCS Potential, Crystals 2 (2016) 14.
[48] J. Park, H. Kim, S. S. Han, and Y. Jung, Tuning Metal−Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO2 Affinity by Metal Substitution, J. Phys. Chem. Lett. 3 (2012) 826.
[49] B. Supronowicz, A. Mavrandonakis, and T. Heine, Interaction of Small Gases with the Unsaturated Metal Centers of the HKUST‐1 Metal Organic Framework, J. Phys. Chem. C 117 (2013) 14570.
[50] H. Wu, J. M. Simmons, G. Srinivas, W. Zhou, and T. Yildirim, Adsorption Sites and Binding Nature of CO2 in Prototypical Metal-Organic Frameworks: A Combined Neutron Diffraction and First-Principles Study, J. Phys. Chem. Lett. 1 (2010) 1946.
[51] D. Britt, D. Tranchemontagne, and O. M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases, PNAS 105 (2008) 11623.
[52] F. Bonino, S. Chavan, J. G. Vitillo, E. Groppo, G. Agostini, C. Lamberti, P. D. C. Dietzel, C. Prestipino, and S. Bordiga, Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO. Chem. Mater. 20 (2008) 4957.
[53] L. Hamon, C. Serre, T. Devic, T. Loiseau, F. Millange, G. Férey, and G. De Weireld, Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal−Organic Frameworks at Room Temperature, J. Am. Chem. Soc. 131 (2009) 8775.
[54] K. Tan, P. Canepa, Q. Gong, J. Liu, D. H. Jonhson, A. Dyevoich, P. K. Thallapally, T. Thonhauser, J. Li, and Y. J. Chabal, Mechanism of preferential adsorption of SO2 into two microporous paddle wheel frameworks M(bdc)(ted)0.5, Chem. Mater. 25 (2013) 4653.
[55] J. R. Karra, and K. S. Walton, Molecular Simulations and Experimental Studies of CO2, CO, and N2 Adsorption in Metal−Organic Frameworks, J. Phys. Chem. C 114 (2010) 15735.
[56] K. Munusamy, G. Sethia, D. V. Patil, P. B. S. Rallapalli, R. S. Somani, H. C. Bajaj, Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): Volumetric measurements and dynamic adsorption studies, Chem. Eng. J. 195-196 (2012) 359.
[57] L. Wang, L. Wang, J. Zhao, and T. Yan, Adsorption of selected gases on metal-organic frameworks and covalent organic frameworks: A comparative grand canonical Monte Carlo simulation, J. Appl. Phys. 111 (2012) 112628.
[58] P. Mishra, S. Mekala, F. Dreisbach, B. Mandal, and S. Gumma, Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework, Sep. Purif. Technol. 94 (2012) 124.
[59] P. K. Allan, P. S. Wheatley, D. Aldous, M. I. Mohideen, C. Tang, J. A. Hriljac, I. L. Megson, K. W. Chapman, G. De Weireld, S. Vaesen, and R. E. Morris, Metal–organic frameworks for the storage and delivery of biologically active hydrogen sulfide, Dalton Trans. 41 (2012) 4060.
[60] Z. Li, Y. Xiao, W. Xue, Q. Yang, and C. Zhong, Ionic Liquid/Metal-Organic Framework Composites for HS Removal from Natural Gas: A Computational Exploration, J. Phys. Chem. C 119 (2015) 3674.
[61] S. Yang, J. Sun, A. J. Ramirez-Cuesta, S. K. Callear, W. I. F. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang and M. Schröder, Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host, M. Nat. Chem. 4 (2012) 887.
[62] P. K. Thallapally, R. K. Motkuri, C. A. Fernandez, B. P. McGrail, and G. S. Behrooz, Prussian Blue Analogues for CO2 and SO2 Capture and Separation Applications, Inorg. Chem. 49 (2010) 4909.
[63] C. A. Fernandez, P. K. Thallapally, R. K. Motkuri, S. K. Nune, J. C. Sumrak, J. Tian, and J. Liu, Gas-Induced Expansion and Contraction of a Fluorinated Metal−Organic Framework, Cryst. Growth Des. 10 (2010) 1037.
[64] P. Horcajada, C. Serre, R. Gref, and P. Couvreur, "Porous Metal–Organic Frameworks as New Drug Carriers," in Comprehensive Biomaterials, 1st edition, Oxford: Elsevier, 2011.
[65] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, and C. Serre, Metal-Organic Frameworks in Biomedicine, Chem. Rev. 112 (2012) 1232.
[66] S. Keskin and S. Kızıle, Biomedical Applications of Metal Organic Frameworks, Ind. Eng. Chem. Res. 50 (2011) 1799.
[67] C. He, D. Liu and W. Lin, Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers, Chem. Rev. 115(2015) 11079
[68] J. F. Eubank, P. S. Wheatley, G. Lebars, A. C. McKinlay, H. Leclerc, P. Horcajada, M. Daturi, A. Vimont, R. E. Morris, and C. Serre, Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide, APL Mat. 2 (2014) 124112.
[69] N. J. Hinks, A. C. McKinlay, B. Xiao, P. S. Wheatley, and R. E. Morris, Metal organic frameworks as NO delivery materials for biological applications, Micropor. Mesopor. Mat. 129 (2010) 330.
[70] S. R. Miller, E. Alvarez, L. Fradcourt, T. Devic, S. Wuttke, P. S. Wheatley, N. Steunou, C. Bonhomme, C. Gervais, D. Laurencin, R. E. Morris, A. Vimont, M. Daturi, P. Horcajada, and C. Serre, A rare example of a porous Ca-MOF for the controlled release of biologically active NO, Chem. Commun. 49 (2013) 7773.
[71] A. C. McKinlay, J. F. Eubank, S. Wuttke, B. Xiao, P. S. Wheatley, P. Bazin, J.-C. Lavalley, M. Daturi, A. Vimont, G. D. Weireld, P. Horcajada, C. Serre, and R. E. Morris, Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal−Organic Frameworks, Chem. Mater. 25 (2013) 1592.
[72] B. Xiao, P. S. Wheatley, X. Zhao, A. J. Fletcher, S. Fox, A. G. Rossi, I. L. Megson, S. Bordiga, L. Regli, K. M. Thomas, and R. E. Morris, High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metal-Organic Framework, J. Am. Chem. Soc. 129 (2007) 1203.
[73] A. McKinlay, B. Xiao, D. S. Wragg, P. S. Wheatley, I. L. Megson, and R. E. Morris, Exceptional Behavior over the Whole Adsorption-Storage-Delivery Cycle for NO in Porous Metal Organic Frameworks, J. Am. Chem. Soc. 130 (2008) 10440.
[74] D. Cattaneo, S. J. Warrender, M. J. Duncan, C. J. Kelsall, M. K. Doherty, P. D. Whitfield, I. L. Megson, and R. E. Morris, Tuning the nitric oxide release from CPO-27 MOFs, RCS Adv. 6 (2016) 14059.
[75] E. D. Bloch, W. L. Queen, S. Chavan, P. S. Wheatley, J. M. Zadrozny, R. Morris, C. M. Brown, C. Lamberti, S. Bordiga, and J. R. Long, Gradual Release of Strongly Bound Nitric Oxide from Fe2(NO)2(dobdc), J. Am. Chem. Soc. 137(2015) 3466.
[76] M. Ma, H. Noei, B. Mienert, J. Niesel, E. Bill, M. Muhler, R. A. Fischer, Y. Wang, U. Schatzschneider, and N. Metzler-Nolte, Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide, Chem. Eur. J. 19 (2013) 6785.
[77] P. Horcajada, C. Serre, M. Vallet-regí, M. Sebban, F. Taulelle, and G. Fé¬rey, Metal–Organic Frameworks as Efficient Materials for Drug Delivery, Angew. Chem. Int. Ed. 45 (2006) 5974.
[78] P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle, and G. Férey, Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery, J. Am. Chem. Soc. 130 (2008) 6774.
[79] A. Layre, R. Gref, J. Richard, D. Requier, and P. Couvreur, Nanoparticules polymériques composites, FR 04 (2004) 07569.
[80] A. Layre, P. Couvreur, H. Chacun, J. Richard, C. Passirani, D. Requier, J. P. Benoit, and R. Gref, Novel composite core-shell nanoparticles as busulfan carriers, J. Controlled Release 111 (2006) 271.
[81] T. Chalati, P. Horcajada, P. Couvreur, C. Serre, G. Maurin, and R. Gref, Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation, Nanomedicine 6 (2011) 1683.
[82] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P. -N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater. 9 (2010) 172.
[83] P. Horcajada, C. Serre, G. Férey, R. Gref, and P. Couvreur, Solide hybride organique inorganique a surface modifiee, French patent application 102573/FR filed the 1/10/2007 PCT/FR2009/001367, 01/10/08.
[84] P. Horcajada, C. Serre, G. Férey, R. Gref, and P. Couvreur, Nanoparticules hybrides organiques inorganiques a base de carboxylates de fer, French patent application 100936/FR filed the 1/10/2007, PCT/FR2008/001366, 01/10/08.