Pham Thi Hong, Nguyen Viet Tuyen, Tran Thi Ha

Main Article Content

Abstract

Cu2ZnSnS4 (CZTS) is a p-type semiconductor with high absorption coefficient and direct bandgap from 1 to 1.5 eV, which is ideal for making absorber layer for solar cell. However, it is difficult to get single phase of CZTS due to the competitive formation of binary and ternary secondary phases. In this paper, we prepared CZTS nanoparticles by hydrothermal method and investigate the influence of hydrothermal temperature on the product. Raman scattering, X-ray diffraction, scanning electron microcopy, energy dispersive X-ray spectroscopy and diffusion reflective measurement were applied to characterize the products. The products are high quality nanocrystals of kesterite phase with uniform size which is applicable for solar absorber layer fabrication.

Keywords: Cu2ZnSnS4, hydrothermal, kesterite; Raman;

References

[1] C. Malerba, F. Biccari, C.L.A. Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, CZTS stoichiometry effects on the band gap energy, J.Alloy.Compd582 (2014), 528-534.
[2] N. Ali, R. Ahmed, B.-U.-Haq, and A. Shaari, Advances in CZTS thin films and nanostructured, Opto-Electronics Review (2015), 137-142.
[3] S. Zhuka, A. Kushwahaa, T.K.S. Wongb, S.M.-Panaha, A. Smirnovd, G.K. Dalapatia, Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance, Sol. Energy Mater. Sol. Cells 171 (2017), 239-252.
[4] J. Zhong, Z. Xia, M. Luo, J. Zhao, J. Chen, L. Wang, X. Liu, D.-J. Xue, Y.-B. Cheng, H. Song, and J. Tang, Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells, Sci Rep (2014), 6288(1)-6288(9).
[5] C.-L. Wang, C.-C. Wang, B. Reeja-Jayan and A. Manthiram, Low-cost, Mo(S,Se)2-free superstrate-type solar cells fabricated with tunable band gap Cu2ZnSn(S1-xSex)4nanocrystal-based inks and the effect of sulfurization, RSC Advances (2013), 19946-19951.
[6] M.P.Suryawanshi, U.V.Ghorpade, U.P.Suryawanshi, M. He, J. Kim, M.G. Gang, P.S.Patil, A.V.Moholkar, J.H. Yun, and J.H. Kim, Aqueous-Solution-ProcessedCu2ZnSn(S,Se)4Thin-Film Solar Cells via an Improved Successive Ion-Layer-Adsorption-Reaction Sequence, ACS Omega 2 (2017), 9211-9220.
[7] I.D. Olekseyuk, I.V. Dudchak, L.V.Piskach, Phase equilibria in the Cu2S-ZnS-SnS2 system, J.Alloy.Compd 368 (2003),135-143.
[8] S. Das, R.M. Krishna, S. Ma, K.C. Mandal, Single phase polycrystalline Cu2ZnSnS4 grown by vertical gradient freeze technique, J.Cryst. Growth 381 (2013), 148-152.
[9] S. Siebentritt, S. Schorr, Kesterites-a challenging material for solar cells, Prog.Photovoltaics Res. Appl.20 (2012), 512-519.
[10] P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Study of polycrystalline Cu2ZnSnSe4 films by Raman scattering, J.Alloy.Compd 509 (2011), 7600-7606.
[11] G.M. Ilari, C.M. Fella, C.Ziegler, A.R. Uhl, Y.E. Romanyukand, A.N. Tiwari, Cu2ZnSnSe4 solar cell absorbers spin-coated from amine-containing ether solutions, Sol. Energy Mater. Sol. Cells 104 (2012), 125-130.
[12] E.J. Lee, S.J. Park, J.W. Cho, J.H. Gwak, M.K. Oh and B.K. Min, Nearly carbon-free printable CIGS thin films for solar cell applications, Sol. Energy Mater. Sol. Cells 95 (2011), 2928-2932.
[13] S.J. Ahn, C.W. Kim, J.H. Yun, J.H. Gwak, S.H. Jeong,B.H. Ryu and K.H. Yoon, CuInSe2 (CIS) Thin film solar cells by direct coating and selenization of solution precursors, J. Phys. Chem. C 114 (2010) 8108–8113.
[14] W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak and K.H. Wong, Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4nanocrystal quantum dots: band gap engineering and phonon confinement effect, J. Mater. Chem A1 (2013), 3182-3186.
[15] K. Woo, Y. Kim and J. Moon, A non-toxic, solution-prcessed, earth abundant absorbing layer for thin-film solar cells, Energy Environ. Sci. 5 (2012), 5340-5345.
[16] S. Chen, J.-H.Yang, X.G. Gong, A. Walsh, amd S.-H.Wei, Intrinsic point defect and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4, Phys. Rev. B 82 (2010), 245204-245204.