The Studies of Energy Transfer between Sm3+ ions in Lead Sodium Telluroborate Glasses Using Inokuti-Hirayama Model
Main Article Content
Abstract
Lead sodium telluroborate (LSTB) glasses doped with different concentrations of Sm3+ ions were prepared by melting method. The excitation, emission spectra and lifetimes of LSTB:Sm3+ have been investigated. The quenching of luminescence intensity happens after 0.75 mol% concentration of Sm3+ ions. The non-exponential decay curves are fitted to the Inokuti and Hirayama model to give the energy transfer parameters between Sm3+ ions. The dominant interaction mechanism for energy transfer process is dipole–dipole interaction. The energy transfer probability (WDA) increases whereas lifetime (τexp) decreases with the increase of Sm3+ concentration in glass.
Keywords:
Lead sodium telluroborate glass, Inokuti and Hirayama model.
References
[1] J.G. Sole, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, 2005, John Wlley and Sons, Ltd.
[2] W.A. Pisarskia, J. Pisarska, R. Lisiecki, G.D. Dzik, W.R. Romanowski, Chemical Physics Letters 531 (2012) 114–118.
[3] Phan Van Do, Vu Phi Tuyen, Vu Xuan Quang, N. M. Khaidukov, Nguyen Ttrong Thanh, B. Sengthong, Bui The Huy, J. Lumin 179 (2016) 93–99.
[4] Phan Van Do, VNU Journal of Science: Mathematics-Physics, 34 (2018) 33-39.
[5] L. Jyothi, G. Upender,R. Kuladeep, D.N. Rao, (2014), Mater. Res. Bull. 50, 424–431.
[6] Vu Phi Tuyen, B. Sengthong, Vu Xuan Quang, Phan Van Do, Ho Van Tuyen, Le Xuan Hung, Nguyen Trong Thanh, M. Nogami, T. Hayakawa, Bui The Huy, J. Lumin 178 (2016) 27–33.
[7] M. Inokuti, F. Hirayama, J.Chem.Phys. 43 (1965) 1978.
[8] W.T. Carnal, P.R. Fields, K. Rajnak, J.Chem.Phys. 49 , (1968), 4424.
[9] C.S. Rao, C.K. Jayasankar, Opt. Commun. 286 (2013) 204-210.
[10] S. Thomas, R. George, S. Nayab Rasool, M. Rathaiah, V. Venkatramu, C. Joseph, N.V. Unnikrishnan, Opt. Mater. 36 (2013) 242-250.
[11] T. Suhasini, J. Suresh Kumar, T. Sasikala, K. Jang, H.S. Lee, M. Jayasimhadri, J.H. Jeong, S.S. Yi, L. Rama Moorthy, Opt. Commun. 31 (2009) 1167-1172.
[12] Ch. Basavapoornima, C.K. Jayasankar, J. Lumin. 153 (2014) 233–241.
[13] Ki-Soo Lim, N. Vijaya, C.R. Kesavulu,, C.K. Jayasankar, Opt. Mater. 35 (2013) 1557–1563.
[14] V. Lavin, I.R. Martin, C.K. Jayasankar, Th. Troster, Phys. Rew B. 66 (2002) 064207.
[15] P. Solarz,W. Ryba-Romanowski, Phys. Rew B. 72 (2005) 075105.
[16] W. Stambouli, H. Elhouichet, B. Gelloz, M. Férid, N. Koshida, J. Lumin. 132 (2012) 205–209.
[2] W.A. Pisarskia, J. Pisarska, R. Lisiecki, G.D. Dzik, W.R. Romanowski, Chemical Physics Letters 531 (2012) 114–118.
[3] Phan Van Do, Vu Phi Tuyen, Vu Xuan Quang, N. M. Khaidukov, Nguyen Ttrong Thanh, B. Sengthong, Bui The Huy, J. Lumin 179 (2016) 93–99.
[4] Phan Van Do, VNU Journal of Science: Mathematics-Physics, 34 (2018) 33-39.
[5] L. Jyothi, G. Upender,R. Kuladeep, D.N. Rao, (2014), Mater. Res. Bull. 50, 424–431.
[6] Vu Phi Tuyen, B. Sengthong, Vu Xuan Quang, Phan Van Do, Ho Van Tuyen, Le Xuan Hung, Nguyen Trong Thanh, M. Nogami, T. Hayakawa, Bui The Huy, J. Lumin 178 (2016) 27–33.
[7] M. Inokuti, F. Hirayama, J.Chem.Phys. 43 (1965) 1978.
[8] W.T. Carnal, P.R. Fields, K. Rajnak, J.Chem.Phys. 49 , (1968), 4424.
[9] C.S. Rao, C.K. Jayasankar, Opt. Commun. 286 (2013) 204-210.
[10] S. Thomas, R. George, S. Nayab Rasool, M. Rathaiah, V. Venkatramu, C. Joseph, N.V. Unnikrishnan, Opt. Mater. 36 (2013) 242-250.
[11] T. Suhasini, J. Suresh Kumar, T. Sasikala, K. Jang, H.S. Lee, M. Jayasimhadri, J.H. Jeong, S.S. Yi, L. Rama Moorthy, Opt. Commun. 31 (2009) 1167-1172.
[12] Ch. Basavapoornima, C.K. Jayasankar, J. Lumin. 153 (2014) 233–241.
[13] Ki-Soo Lim, N. Vijaya, C.R. Kesavulu,, C.K. Jayasankar, Opt. Mater. 35 (2013) 1557–1563.
[14] V. Lavin, I.R. Martin, C.K. Jayasankar, Th. Troster, Phys. Rew B. 66 (2002) 064207.
[15] P. Solarz,W. Ryba-Romanowski, Phys. Rew B. 72 (2005) 075105.
[16] W. Stambouli, H. Elhouichet, B. Gelloz, M. Férid, N. Koshida, J. Lumin. 132 (2012) 205–209.