Raman Spectroscopy of CaCu3Ti4O12 Ceramics Revisited
Main Article Content
Abstract
The CaCu3Ti4O12 ceramic has been prepared by Solid State Reaction method in excess oxygen. It possesses a well-defined double-perovskite type crystalline structure and exhibits a colossal dielectric constant at around 50000 at room temperature. This paper revised the imprints of Raman spectroscopy of this compound to validate its structural characteristics and optical behaviors. A special attention is paid on the account of optical phonons which show a recognizable agreement with the other results recently reported
Keywords:
CCTO, structure, optical phonon, ceramic method
References
1. J.J. Mohamed, S.D.Hutagalung, M.F. Ain, K. Deraman, Z.A. Ahmad, Materials Letters 61, 1835–1838 (2007).
2. W. Ren, Z. Yu, V.D. Krstic and B.K. Mukherjee, Proc. of the 14th IEEE International Symposium on Applications of Ferroelectrics, ISAF-04 (2004).
3. W. Lia, R. W. Schwartz, A. Chen and J. Zhu, Appl. Phys. Lett. 90, 112901 (2007).
4. L. Liu, H. Fan, P. Fang, L. Jin, Solid State Communications 142, 573–576 (2007).
5. L. Fang, M. Shen, J.Yang, Z. Li, Solid State Communications 137, 381–386 (2006).
6. C.P. Sun, J. Liu, J-Y. Lin, C.-G. Duan, W.N. Mei and H. D. Yang, J. Phys.: Condens. Matter 20, 285214 (2008).
7. L. He, J. B. Neaton, D. Vanderbilt and M. H. Cohen, Phys. Rev. B 67, 012103 (2003).
8. S. K. Manika, S. K. Pradhanb, Physica E 33, 160–168 (2006).
9. N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, and M. N. Iliev, Phys. Rev. B 66, 132102 (2002).
10. D. Valim, A. G. S. Filho, P. T. C. Freire, S. B. Fagan, A. P. Ayala, J. M. Filho, A. F. L. Almeida, P. B. A. Fechine, A. S. B. Sombra, J. S. Olsen, and L. Gerward, Phys. Rev. B70, 132103 (2004).
11. L. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. C. Homes, Phys. Rev. B65, 214112 (2002).
2. W. Ren, Z. Yu, V.D. Krstic and B.K. Mukherjee, Proc. of the 14th IEEE International Symposium on Applications of Ferroelectrics, ISAF-04 (2004).
3. W. Lia, R. W. Schwartz, A. Chen and J. Zhu, Appl. Phys. Lett. 90, 112901 (2007).
4. L. Liu, H. Fan, P. Fang, L. Jin, Solid State Communications 142, 573–576 (2007).
5. L. Fang, M. Shen, J.Yang, Z. Li, Solid State Communications 137, 381–386 (2006).
6. C.P. Sun, J. Liu, J-Y. Lin, C.-G. Duan, W.N. Mei and H. D. Yang, J. Phys.: Condens. Matter 20, 285214 (2008).
7. L. He, J. B. Neaton, D. Vanderbilt and M. H. Cohen, Phys. Rev. B 67, 012103 (2003).
8. S. K. Manika, S. K. Pradhanb, Physica E 33, 160–168 (2006).
9. N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, and M. N. Iliev, Phys. Rev. B 66, 132102 (2002).
10. D. Valim, A. G. S. Filho, P. T. C. Freire, S. B. Fagan, A. P. Ayala, J. M. Filho, A. F. L. Almeida, P. B. A. Fechine, A. S. B. Sombra, J. S. Olsen, and L. Gerward, Phys. Rev. B70, 132103 (2004).
11. L. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. C. Homes, Phys. Rev. B65, 214112 (2002).