Vuong Pham Hung, Pham Van Huan, Phuong Dinh Tam, Nguyen Thi Ha Hanh, Cao Xuan Thang

Main Article Content

Abstract

Abstract: This paper the role of Cu 2+ concentrations in luminescence quenching of Eu3+ / Cu 2+ doped ZrO2 nanoparticles synthesized by co-precipitation method. The synthesized Eu 3+ / Cu 2+ doped ZrO2 nanoparticles were observed to have sphere morphology with a diameter of ~ 25 nm. The XRD patterns of the nanoparticles revealed the peaks that were to be crystalline tetragonal ZrO2. The addition of Cu 2+ to the Eu 3+ doped ZrO2 nanoparticles resulted in a significant suppress luminescence in Eu 3+ / Cu 2+ doped ZrO2 nanoparticles, which was attributed to the spectral overlap occurs between Cu 2+ absorption and Eu 3+ emission (5D07F2 transition).


Keywords: Zirconia; luminescence; precipitation; quenching, nanoparticles.

Keywords: zirconia; luminescence; precipitation; quenching; nanoparticles.

References

1. French RH, Glass SJ, Ohuchi FS, Xu YN, Ching WY. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Physical Review B. 1994; 49: 5133 – 5142.
2. Chang SM, Doong RA. Chemical-composition-dependent metastability of tetragonal ZrO2 in sol-gel-derived films under different calcination conditions. Chem Mater. 2005; 17: 4837– 4844.
3. De la Rosa E, Diaz-Torres LA, Salas P, Rodríguez RA. Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Optical Materials. 2005; 27: 1320 – 1325.
4.Terra IAA, Borrero-Gonzalez LJ, Carvalho JM, Terrile MC, Felinto MCFC, Brito HF, Nunes LAO. Spectroscopic properties and quantum cutting in Tb3+-Yb3+ co-doped ZrO2 nanocrystals. J Appl Phys. 2013; 113: 073105 – 07311.
5. Soares MRN, Nico C, Oliveira D, Peres M, Rino L, Fernandes AJS, Monteiro T, Costa FM. Red light from ZrO2:Eu3+ nanostructures. Materials Science and Engineering B. 2012; 177: 712–716.
6. Lãpez-Luke T, De la Rosa E, Salas P, Angeles-Chavez C, Díaz-Torres LA, Bribiesca S. Enhancing the up-Conversion emission of ZrO2:Er3+ Nanocrystals prepared by a micelle process. J. Phys. Chem. C. 2007; 111: 17110 –17117.
7. Gunawidjaja R , Myint T, Eilers H. Temperature-Dependent Phase Changes in Multicolored ErxYbyZr1–x–yO2/Eu0.02Y1.98O3 Core/Shell Nanoparticles. J Phys Chem C. 2013; 117: 14427–14434.
8. Primus PA, Menski A, Yeste MP, Cauqui MA, Kumke MU. Fluorescence line-narrowing spectroscopy as a tool to monitor phase transitions and phase separation in efficient nanocrystalline CexZr1-xO2:Eu3+ catalyst materials. J Phys Chem C. 2015; 119: 10682 – 1069.
9. Lãpez-Romero S, Quiroz Jiménez MJ, García,-Hipãlito M. Quenching photoluminescence of Eu (III) by Cu (II) in ZnO: Eu3+ + Cu2+ compounds by solution Combustion Method. World Journal of Condensed Matter Physics. 2016; 6: 269 – 275.
10. Jiménez JA. Photoluminescence of Eu3+ Doped Glasses with Cu2+ Impurities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;145: 482 – 486.
11. Murata T, Morinaga K. Effect of antimony oxide on the deposition and dispersion of metallic copper nanoparticles in phosphate glasses for optical nonlinear materials. Proceedings of the SPIE. 2000; 4102: 316–323.
12. Jiménez JA. Efficient stabilization of Cu+ ions in phosphate glasses via reduction of Cu2+ by Sn2+ during ambient atmosphere melting. J Mater Sci. 2014; 49: 4387.
13. Batyaev IM, Tinus AM. Transport of electronic excitation energy in solid-state glassy phosphors activated with europium (III) and copper (II). Tech Phys Lett. 1998; 24: 26 – 27.