Vuong Pham Hung, Pham Van Huan, Phuong Dinh Tam, Nguyen Thi Ha Hanh, Cao Xuan Thang

Main Article Content


Abstract: This paper the role of Cu 2+ concentrations in luminescence quenching of Eu3+ / Cu 2+ doped ZrO2 nanoparticles synthesized by co-precipitation method. The synthesized Eu 3+ / Cu 2+ doped ZrO2 nanoparticles were observed to have sphere morphology with a diameter of ~ 25 nm. The XRD patterns of the nanoparticles revealed the peaks that were to be crystalline tetragonal ZrO2. The addition of Cu 2+ to the Eu 3+ doped ZrO2 nanoparticles resulted in a significant suppress luminescence in Eu 3+ / Cu 2+ doped ZrO2 nanoparticles, which was attributed to the spectral overlap occurs between Cu 2+ absorption and Eu 3+ emission (5D07F2 transition).

Keywords: Zirconia; luminescence; precipitation; quenching, nanoparticles.

Keywords: zirconia; luminescence; precipitation; quenching; nanoparticles.


1. French RH, Glass SJ, Ohuchi FS, Xu YN, Ching WY. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Physical Review B. 1994; 49: 5133 – 5142.
2. Chang SM, Doong RA. Chemical-composition-dependent metastability of tetragonal ZrO2 in sol-gel-derived films under different calcination conditions. Chem Mater. 2005; 17: 4837– 4844.
3. De la Rosa E, Diaz-Torres LA, Salas P, Rodríguez RA. Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Optical Materials. 2005; 27: 1320 – 1325.
4.Terra IAA, Borrero-Gonzalez LJ, Carvalho JM, Terrile MC, Felinto MCFC, Brito HF, Nunes LAO. Spectroscopic properties and quantum cutting in Tb3+-Yb3+ co-doped ZrO2 nanocrystals. J Appl Phys. 2013; 113: 073105 – 07311.
5. Soares MRN, Nico C, Oliveira D, Peres M, Rino L, Fernandes AJS, Monteiro T, Costa FM. Red light from ZrO2:Eu3+ nanostructures. Materials Science and Engineering B. 2012; 177: 712–716.
6. Lãpez-Luke T, De la Rosa E, Salas P, Angeles-Chavez C, Díaz-Torres LA, Bribiesca S. Enhancing the up-Conversion emission of ZrO2:Er3+ Nanocrystals prepared by a micelle process. J. Phys. Chem. C. 2007; 111: 17110 –17117.
7. Gunawidjaja R , Myint T, Eilers H. Temperature-Dependent Phase Changes in Multicolored ErxYbyZr1–x–yO2/Eu0.02Y1.98O3 Core/Shell Nanoparticles. J Phys Chem C. 2013; 117: 14427–14434.
8. Primus PA, Menski A, Yeste MP, Cauqui MA, Kumke MU. Fluorescence line-narrowing spectroscopy as a tool to monitor phase transitions and phase separation in efficient nanocrystalline CexZr1-xO2:Eu3+ catalyst materials. J Phys Chem C. 2015; 119: 10682 – 1069.
9. Lãpez-Romero S, Quiroz Jiménez MJ, García,-Hipãlito M. Quenching photoluminescence of Eu (III) by Cu (II) in ZnO: Eu3+ + Cu2+ compounds by solution Combustion Method. World Journal of Condensed Matter Physics. 2016; 6: 269 – 275.
10. Jiménez JA. Photoluminescence of Eu3+ Doped Glasses with Cu2+ Impurities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;145: 482 – 486.
11. Murata T, Morinaga K. Effect of antimony oxide on the deposition and dispersion of metallic copper nanoparticles in phosphate glasses for optical nonlinear materials. Proceedings of the SPIE. 2000; 4102: 316–323.
12. Jiménez JA. Efficient stabilization of Cu+ ions in phosphate glasses via reduction of Cu2+ by Sn2+ during ambient atmosphere melting. J Mater Sci. 2014; 49: 4387.
13. Batyaev IM, Tinus AM. Transport of electronic excitation energy in solid-state glassy phosphors activated with europium (III) and copper (II). Tech Phys Lett. 1998; 24: 26 – 27.