Nguyen The Manh, Duong Hong Quan, Vu Thi Ngoc Minh, Vuong Pham Hung

Main Article Content

Abstract

In this article, micro-/nano urchin-like VO2 particles were successfully synthesized by hydrothermal method. Vanadium pentoxide (V2O5), oxalic acid (C2H2O4) and sodium dodecyl sulfate (SDS) surfactant were used as reagents for the synthesis of VO2. The article reports on the synthesis procedure of VO2 nanorods and micro-/nano urchin-like VO2 structure and evaluates the methylene blue (MB) adsorption properties. Morphology and particle size of VO2 were observed by FE-SEM. The VO2 formation phase was studied by XRD. Raman spectroscopy was also used for characterizing VO2. Micro-/nano urchin-like VO2 structure shows good MB adsorption properties that have potential applications in dye-contaminated water treatment.

Keywords: Micro-/nano-scale; nanoparticles;VO2; methylene Blue

References

[1] F. Wang, C. Li, J.C. Yu, Hexagonal tungsten trioxide nanorods as a rapid adsorbent for methylene blue, Sep. Purif. Technol. 91 (2012) 103-107. https://doi.org/10.1016/j.seppur.2011.12.001
[2] L. Dusek, Čištění odpadních vod chemickou oxidací hydroxylovými radikály, Chem. Listy 104 (2010) 846-854.Došlo 22.9.08, přepracováno 1.2.10, přijato 18.2.10.
[3] Q. Wang, D.H. Zhang, S.L. Tian, P. Ning, Simultaneous adsorptive removal of methylene blue and copper ions from aqueous solution by ferrocene‐modified cation exchange resin, Appl. Polymer Sci. 131(2014) 41029. https://doi.org/10.1002/app.41029.
[4] S. Popli, U.D. Patel, Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review, Int. J. Environ. Sci. Technol. 12 (2015) 405-420. Doi 10.1007/s13762-014-0499-x.
[5] H. Han, W. Wei, Z.F. Jiang, J.W. Lu, J.J. Zhu, J.M. Xie, Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel, Colloids and Surfaces A: Physicochem. Eng. Aspects, 509 (2016) 539-549. https://doi.org/10.1016/j.colsurfa.2016.09.056.
[6] J.Y. Luo, Y.R. Lin, B.W. Liang, Y.D. Li, X.W. Mo, Q.G. Zeng, Controllable dye adsorption behavior on amorphous tungsten oxide nanosheet surfaces, RSC Adv. 5 (2015) 100898-100904.10.1039/C5RA18601C.
[7] Y. Bulut, H. Aydin, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination, 194 (2006) 259-267. https://doi.org/10.1016/j.desal.2005.10.032.
[8] P. Hadi, M. Xu, C. Ning, C.S.K. Lin, G. Mckay, A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment, Chem. Eng. J. 260 (2015) 895-906. https://doi.org/10.1016/j.cej.2014.08.088.
[9] D.D. Sewu, P. Boakye, H. Jung, S.H. Woo, Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica, Bioresource Technol. 244 (2017) 1142-1149. doi: 10.1016/j.biortech.2017.08.103.
[10] G.Li, S.Pang, L. Jiang, Z. Guo, Z. Zhang, Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries, J. Phys. Chem. B110 (2006) 9383-9386.https://doi.org/10.1021/jp060904s.
[11] H.Y. Kim, V. Vo, Y. Kim, S.J. Kim, Lamellar phases containing vanadium oxide: synthesis, characterization and application of the adsorption of phenol from aqueous solutions, J. Nanosci. Nanotechnol. 11 (2011) 6437-6442. DOI: https://doi.org/10.1166/jnn.2011.4406.
[12] J. Liu, X. Wang, Q. Peng, Y. Li, Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials, Adv. Mater. 17 (2005) 764-767.
https://doi.org/10.1002/adma.200400993.
[13] S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang, A. Yu, Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties, Progress in Materials Science 81 (2016) 1-54.https://doi.org/10.1016/j.pmatsci.2016.03.001.
[14] L. Zhang, J. Yao, F. Xia, Y. Guo, C. Cao, C. Zhang, Y. Gao, H. Luo, VO2(D) hollow core–shell microspheres: synthesis, methylene blue dye adsorption and their transformation into C/VOx nanoparticles, Inorg. Chem. Front.11 (2018) 189-200. 10.1039/C7QI00819H.
[15] R. Cai, J. Chen, D. Yang, Z.Y. Zhang, S.J. Peng, J. Wu, W.Y.Zhang, C.F. Zhu, T.M. Lim, H. Zhang, Q.Y. Yan, Solvothermal-Induced Conversion of One-Dimensional Multilayer Nanotubes to Two-Dimensional Hydrophilic VOx Nanosheets: Synthesis and Water Treatment Application, ACS Appl. Mater. Interfaces, 5 (2013) 10389-10394. https://doi.org/10.1021/am403572k.
[16] H.F. Xua, Y. Liu, N. Wei, S.W. Jin, From VO2 (B) to VO2 (A) nanorods: Hydrothermal synthesis,
Evolution and optical properties in V2O5-H2C2O4- H2O system, Optik 125 (2014) 6078–6081.https://doi.org/10.1016/j.ijleo.2014.06.132.
[17] Z. Wu, M.Zhang, K.Yu, S. Zhang, Y.Xie, Self‐Assembled Double‐Shelled Ferrihydrite Hollow Spheres with a Tunable Aperture, Chem.Eur.J. 14 (2008)5346-5352.
https://doi.org/10.1002/chem.200701945.
[18] H.C. Zeng, Ostwald Ripening: A Synthetic Approach for Hollow Nanomaterials, Curr. Nanosci. 3 (2007) 177-181. DOI : 10.2174/157341307780619279.
[19] S.R.Popuri, M.Miclau, A.Artemenko,C. Labrugere, A.Villesuzanne, M.Pollet, Rapid Hydrothermal Synthesis of VO2 (B) and Its Conversion to Thermochromic VO2 (M1), Inorg. Chem. 52 (2013) 4780- 4785. https://doi.org/10.1021/ic301201k.
[20] Q. Huo, D.I. Margolese, U.Ciesla, P.Y.Feng, T.E. Gier, P.Sieger, R.Leon, P.M. Petroff, F.Schüth, G.D.Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature. 368(1994)317-321. https://doi.org/10.1038/368317a0.
[21] C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, L. Mai, VO2, Nanowires Assembled into Hollow Microspheres for High-Rate and Long-Life Lithium Batteries, Nano Lett. 14 (2014) 2873–2878.https://doi.org/10.1021/nl500915b.
[22] T. Jiao, Y. Liu, Y. Wu, Q. Zhang, X. Yan, F. Gao, A. J. P. Bauer, J. Liu, T. Zeng, B. Li, Facile and scalable preparation of graphene oxide-based magnetic hybrids for fast and highly efficient removal of organic dyes, Sci. Rep. 5 (2015) 12451. https://doi.org/10.1038/srep12451.