Photoluminescence Emission and Raman Vibration Properties of Asymmetric Mn2+-Doped ZnO Nanoparticle Fabricated by a Solvothermal Method
Main Article Content
Abstract
In this study, Mn2+-Doped ZnO nanoparticle with hexagonal wurtzite phase was fabricated by a solvothermal method where various contents of Mn ion were in situ-doped in ZnO nanostructure. The crystal structure and morphological properties of the nanoparticle were investigated by X-ray diffractometry, Raman spectroscopy and transmission electron microscopy. The photoluminescence (PL) measured at room temperature showed red-shift of near-band-to-band emission and the evolution of visible emissions in the doped samples. The study also analyzed the PL characteristics of synthesized samples and revealed the role of dopant Mn2+ to defect states of ZnO.
Keywords:
Mn ion, ZnO, solvothermal synthesis, nanoparticle, photoluminescence
References
[1] J. Miao, B. Liu, II–VI semiconductor nanowires, Semiconductor Nanowires,Woodhead Publishing, London (2015) 3-28. https://doi.org/10.1016/b978-1-78242-253-2.00001-3
[2] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Films 605 (2016) 2-19.
https://doi.org/10.1016/j.tsf.2015.12.064
[3] M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W. Daud, Application of doped photocatalysts for organic pollutant degradation - A review, Journal of Environmental Management 198 (2017) 78-94.
https://doi.org/10.1016/j.jenvman.2017.04.099
[4] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Research 88 (2016) 428-448.
https://doi.org/10.1016/j.watres.2015.09.045
[5] N.X. Sang, N.M. Quan, N. H. Tho, N.T. Tuan, T.T. Tung, Mechanism of enhanced photocatalytic activity of Cr-doped ZnO nanoparticles revealed by photoluminescence emission and electron spin resonance, Semiconductor Science and Technology 34 (2019) 025013. https://doi.org/10.1088/1361-6641/aaf820
[6] F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis, Materials & Design 101 (2016) 309-316. https://doi.org/https://doi.org/10.1016/j.matdes.2016.04.015
[7] S. Choi, J.Y. Do, J.H. Lee, C.S. Ra, S.K. Kim, M. Kang, Optical properties of Cu-incorporated ZnO (Cu x Zn y O) nanoparticles and their photocatalytic hydrogen production performances, Materials Chemistry and Physics 205 (2018) 206-209. https://doi.org/10.1016/j.matchemphys.2017.11.022
[8] Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, M. Wei, Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol–gel method, Journal of Alloys and Compounds 486 (2009) 835-838. https://doi.org/10.1016/j.jallcom.2009.07.076
[9] H. Luo, P. Dorenbos, The dual role of Cr3+ in trapping holes and electrons in lanthanide co-doped GdAlO3 and LaAlO3, Journal of Materials Chemistry C. 6 (2018) 4977-4984. https://doi.org/10.1039/C8TC01100A
[10] D. Schelonka, M. Slušná, J. Tolasz, D. Popelková, P. Ecorchard, ZnO-GO Composite with for Photocatalytic Applications, Materials Today: Proceedings 3 (2016) 2679-2687.
https://doi.org/https://doi.org/10.1016/j.matpr.2016.06.012
[11] P.S. Chauhan, R. Kant, A. Rai, A. Gupta, S. Bhattacharya, Facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation, Materials Science in Semiconductor Processing 89 (2019) 6-17.
https://doi.org/https://doi.org/10.1016/j.mssp.2018.08.022
[12] N.A. Putri, Y. Febrianti, I. Sugihartono, V. Fauzia, D. Handoko, Effects of Mn dope on morphological, structural and optical properties of ZnO nanorods grown by a hydrothermal method, AIP Conference Proceedings 1862 (2017) 030046. https://doi.org/10.1063/1.4991150
[13] S. Maja J Scepanovic, Raman Study of Structural Disorder in ZnO Nanopowders, Journal of Raman Spectroscopy 41 (2010) 914-921. https://doi.org/https://doi.org/10.1002/jrs.2546
[14] L.R. Cuscó, J. Ibáñez, L. Artús, Temperature dependence of Raman scattering in ZnO, Physical Review B. 75 (2007). https://doi.org/https://dx.doi.org/10.1103/PhysRevB.75.165202
[15] X.L.Xu, J.S.Chen, G.Y.Chen, B.K.Tay, Polycrystalline ZnO thin films on Si (1 0 0) deposited by filtered cathodic vacuum arc, Crystal Growth 223 (2001) 201-205. https://doi.org/https://doi.org/10.1016/S0022-0248(01)00611-X
[16] K. Vanheusden, W.L. Warren, D.R. Tallant, and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters 68 (1996).
https://doi.org/doi.org/10.1063/1.116699
[17] K.Vanheusden, W.L.Warren, D.R.Tallant, J.Caruso, M.J.Hampden-Smith and T.T.Kodas, Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis, Journal of luminescence 75 (1997) 11-16. https://doi.org/doi.org/10.1016/S0022-2313(96)00096-8
[18] F.H. Leiter, A. Hofstaetter, D.M. Hofmann and B.K. Meyer, The Oxygen Vacancy as the Origin of a Green Emission in Undoped ZnO, Physica status solidi (b) 226 (2001) R4-R5.
[19] [19] F.Leiter, D.Pfisterer, N.G.Romanov, D.M.Hofmann and B.K.Meyera, Oxygen vacancies in ZnO, Physica B: Condensed Matter 340-342 (2003) 201-204. https://doi.org/doi.org/10.1016/j.physb.2003.09.031
[20] D.C. Reynolds, B. Jogai, J.E. Van Nostrand, R. Jonesb and J. Jennyb,Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO, Solid State Communications 106 (1998) 701-704.
[21] A. F. Kohan, D. Morgan, and Chris G. Van de Walle, First-principles study of native point defects in ZnO, Physical Review B. 61 (2000). https://doi.org/doi.org/10.1103/PhysRevB.61.15019
[22] W. Anderson Janotti, Native point defects in ZnO, Physical Review B, 76 (2007) 165202.
[23] T. Sekiguchi, N. Ohashi,Y. Terada, Effect of Hydrogenation on ZnO Luminescence, Japanese Journal of Applied Physics 36 (1997) 289-291. https://doi.org/10.1143/JJAP.36.L289
[24] J.W. E. V. Lavrov, F. Börrnert, Chris G. Van de Walle, and R. Helbig, Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy, Physical Review B. 66 (2002).
https://doi.org/10.1103/PhysRevB.66.165205
[25] S. Ramanachalam, W. B. Carter, J. P. Schaffer, T. K. Gupta, Photoluminescence study of ZnO varistor stability, Journal of Electronic Materials 24 (1995) 413-419.
[26] A.B. Djurisic, X.Y. Chen, Y.H. Leung. Recent Progress in Hydrothermal Synthesis of Zinc Oxide Nanomaterials, Recent Patents on Nanotechnology 6 (2012) 124-134.
DOI: 10.2174/187221012800270180
[2] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Films 605 (2016) 2-19.
https://doi.org/10.1016/j.tsf.2015.12.064
[3] M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W. Daud, Application of doped photocatalysts for organic pollutant degradation - A review, Journal of Environmental Management 198 (2017) 78-94.
https://doi.org/10.1016/j.jenvman.2017.04.099
[4] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Research 88 (2016) 428-448.
https://doi.org/10.1016/j.watres.2015.09.045
[5] N.X. Sang, N.M. Quan, N. H. Tho, N.T. Tuan, T.T. Tung, Mechanism of enhanced photocatalytic activity of Cr-doped ZnO nanoparticles revealed by photoluminescence emission and electron spin resonance, Semiconductor Science and Technology 34 (2019) 025013. https://doi.org/10.1088/1361-6641/aaf820
[6] F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis, Materials & Design 101 (2016) 309-316. https://doi.org/https://doi.org/10.1016/j.matdes.2016.04.015
[7] S. Choi, J.Y. Do, J.H. Lee, C.S. Ra, S.K. Kim, M. Kang, Optical properties of Cu-incorporated ZnO (Cu x Zn y O) nanoparticles and their photocatalytic hydrogen production performances, Materials Chemistry and Physics 205 (2018) 206-209. https://doi.org/10.1016/j.matchemphys.2017.11.022
[8] Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, M. Wei, Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol–gel method, Journal of Alloys and Compounds 486 (2009) 835-838. https://doi.org/10.1016/j.jallcom.2009.07.076
[9] H. Luo, P. Dorenbos, The dual role of Cr3+ in trapping holes and electrons in lanthanide co-doped GdAlO3 and LaAlO3, Journal of Materials Chemistry C. 6 (2018) 4977-4984. https://doi.org/10.1039/C8TC01100A
[10] D. Schelonka, M. Slušná, J. Tolasz, D. Popelková, P. Ecorchard, ZnO-GO Composite with for Photocatalytic Applications, Materials Today: Proceedings 3 (2016) 2679-2687.
https://doi.org/https://doi.org/10.1016/j.matpr.2016.06.012
[11] P.S. Chauhan, R. Kant, A. Rai, A. Gupta, S. Bhattacharya, Facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation, Materials Science in Semiconductor Processing 89 (2019) 6-17.
https://doi.org/https://doi.org/10.1016/j.mssp.2018.08.022
[12] N.A. Putri, Y. Febrianti, I. Sugihartono, V. Fauzia, D. Handoko, Effects of Mn dope on morphological, structural and optical properties of ZnO nanorods grown by a hydrothermal method, AIP Conference Proceedings 1862 (2017) 030046. https://doi.org/10.1063/1.4991150
[13] S. Maja J Scepanovic, Raman Study of Structural Disorder in ZnO Nanopowders, Journal of Raman Spectroscopy 41 (2010) 914-921. https://doi.org/https://doi.org/10.1002/jrs.2546
[14] L.R. Cuscó, J. Ibáñez, L. Artús, Temperature dependence of Raman scattering in ZnO, Physical Review B. 75 (2007). https://doi.org/https://dx.doi.org/10.1103/PhysRevB.75.165202
[15] X.L.Xu, J.S.Chen, G.Y.Chen, B.K.Tay, Polycrystalline ZnO thin films on Si (1 0 0) deposited by filtered cathodic vacuum arc, Crystal Growth 223 (2001) 201-205. https://doi.org/https://doi.org/10.1016/S0022-0248(01)00611-X
[16] K. Vanheusden, W.L. Warren, D.R. Tallant, and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters 68 (1996).
https://doi.org/doi.org/10.1063/1.116699
[17] K.Vanheusden, W.L.Warren, D.R.Tallant, J.Caruso, M.J.Hampden-Smith and T.T.Kodas, Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis, Journal of luminescence 75 (1997) 11-16. https://doi.org/doi.org/10.1016/S0022-2313(96)00096-8
[18] F.H. Leiter, A. Hofstaetter, D.M. Hofmann and B.K. Meyer, The Oxygen Vacancy as the Origin of a Green Emission in Undoped ZnO, Physica status solidi (b) 226 (2001) R4-R5.
[19] [19] F.Leiter, D.Pfisterer, N.G.Romanov, D.M.Hofmann and B.K.Meyera, Oxygen vacancies in ZnO, Physica B: Condensed Matter 340-342 (2003) 201-204. https://doi.org/doi.org/10.1016/j.physb.2003.09.031
[20] D.C. Reynolds, B. Jogai, J.E. Van Nostrand, R. Jonesb and J. Jennyb,Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO, Solid State Communications 106 (1998) 701-704.
[21] A. F. Kohan, D. Morgan, and Chris G. Van de Walle, First-principles study of native point defects in ZnO, Physical Review B. 61 (2000). https://doi.org/doi.org/10.1103/PhysRevB.61.15019
[22] W. Anderson Janotti, Native point defects in ZnO, Physical Review B, 76 (2007) 165202.
[23] T. Sekiguchi, N. Ohashi,Y. Terada, Effect of Hydrogenation on ZnO Luminescence, Japanese Journal of Applied Physics 36 (1997) 289-291. https://doi.org/10.1143/JJAP.36.L289
[24] J.W. E. V. Lavrov, F. Börrnert, Chris G. Van de Walle, and R. Helbig, Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy, Physical Review B. 66 (2002).
https://doi.org/10.1103/PhysRevB.66.165205
[25] S. Ramanachalam, W. B. Carter, J. P. Schaffer, T. K. Gupta, Photoluminescence study of ZnO varistor stability, Journal of Electronic Materials 24 (1995) 413-419.
[26] A.B. Djurisic, X.Y. Chen, Y.H. Leung. Recent Progress in Hydrothermal Synthesis of Zinc Oxide Nanomaterials, Recent Patents on Nanotechnology 6 (2012) 124-134.
DOI: 10.2174/187221012800270180