Pham Huu Kien, Pham Mai An, Nguyen Hong Linh, Giap Thuy Trang

Main Article Content

Abstract

In this study, the FeB nanoparticle (NP) consisting of 5,000 particles (4,500 Fe atoms and 500 B atoms) was investigated by means of molecular dynamics (MD) simulation. When the amorphous FeB nanoparticle is annealed at the temperature of 900 K for a long time, it is crystallized into a bcc crystalline structure. The simulation shows that the sample undergoes crystallization via the nucleation mechanism. During the crystallization, B atoms diffuse to the boundary region of Fe crystal. The crystal growth proceeds when this boundary region attains specific properties which are defined by the fraction of B atoms and the energies of AB-atoms and CB-atoms. The study further indicates that the crystalline and mixed FeB nanoparticle consists of three distinct parts including Fe crystalline and two FeB amorphous parts (B-poor and B-rich amorphous parts). The different polymorphs of FeB nanoparticle differ in the local structure, size of Fe crystal and energies of different type atoms.  

Keywords: Annealing, B-poor, B-rich, crystal, amorphous, polymorphs.

References

[1] Y. Shibuta, Y. Watanabe, T. Suzuki, Growth and melting of nanoparticles in liquid iron: A molecular dynamics study, Chemical Physics Letters 475 (2009) 264-268.
[2] E.V. Levchenko, A.V. Evteev, D.P. Riley, I.V. Belova, G.E. Murch, Molecular dynamics simulation of the alloying reaction in Al-coated Ni nanoparticle, Computational Materials Science 47 (2010) 712-720.
[3] V.V. Hoang, D. Ganguli, Amorphous nanoparticles-Experiments and computer simulations, Physics Reports 518 (2012) 81-140.
[4] K.J. Carroll, J.A. Pitts, Kai Zhang, A. K. Pradhan, E. E. Carpenter, Nonclassical crystallization of amorphous iron nanoparticles by radio frequency methods, Journal of Applied Physics 107 (2010) 09A302.
[5] S. Qin, W. Lei, D. Liu, P. Lamb, Y. Chen, Synthesis of single-crystal nanoparticles of indium oxide by “urea glass” method and their electrochemical properties, Materials letters 91 (2013) 5-8.
[6] R.C. O’Handley, Modern Magnetic Materials: Principles and Applications, Wiley, New York, 2000.
[7] A.L. Oppegard, F.J. Darnell, H.C. Miller, Magnetic properties of single-domain iron and iron-cobalt particles prepared by borohydride reduction, Journal of applied physics 32 (1961) S184-S185.
[8] J. van Wonterghem, S. Morup, C.J.W. Koch, S.W. Charles, S. Wells, Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution, Nature 322 (1986) 622.
[9] A. Yedra, et al., Survey of conditions to produce metal–boron amorphous and nanocrystalline alloys by chemical reduction, Journal of non-crystalline solids 287 (2001) 20-25.
[10] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues, Beating the superparamagnetic limit with exchange bias, Nature 423 (2003) 850-861.
[11] Q.A. Pankhurst, et al., Interfacial exchange pinning in amorphous iron-boron nanoparticles, Physical Review B 69 (2004) 212401.
[12] Z.Y. Hou, L.X. Liu, R.S. Liu, Simulation study on the evolution of thermodynamic, structural and dynamic properties during the crystallization process of liquid Na, Modelling and Simulation in Materials Science and Engineering 17 (2009) 035001.
[13] J.H. Shim, S.C. Lee, B.J. Lee, J.Y. Suh, Y.W. Cho, Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle, Journal of Crystal Growth 250 (2003) 558-564.
[14] V.V. Hoang, N.H. Cuong, Local icosahedral order and thermodynamics of simulated amorphous Fe, Physica B: Condensed Matter 404 (2009) 340-346.
[15] X. Li, J. Huang, Molecular dynamics studies of the kinetics of phase changes in clusters III: structures, properties, and crystal nucleation of iron nanoparticle Fe331, Journal of Solid State Chemistry 176 (2003) 234-242.
[16] J.J. Chu, C.A. Steeves, Thermal expansion and recrystallization of amorphous Al and Ti: A molecular dynamics study, Journal of Non-Crystalline Solids 357 (2011) 3765-3773.
[17] C.B.B. Costa, R.M. Filho, Nanoparticle processes modelling: The role of key parameters for population balances for on-line crystallization processes applications, Powder Technology 202(2010) 89-94.
[18] M. Karaman, M. Aydın, S.H. Sedani , K. Ertuk, R. Turan, Low temperature crystallization of amorphous silicon by gold nanoparticle, Microelectronic Engineering 108 (2013) 112-115.
[19] S. Jungblut, C. Dellago, Crystallization of a binary Lennard-Jones mixture, The Journal of chemical physics 134 (2011) 104501.
[20] H.V. Hue, Crystallization of Amorphous Iron Nano-particles by Means of Molecular Dynamics Simulation, Int J Nano Stud Technol 4 (2015) 88-92.
[21] M. Alcoutlabi, G.B. McKenna, Effects of confinement on material behaviour at the nanometre size scale, Journal of Physics: Condensed Matter 17 (2005) 461-470.
[22] L. Gao, Q. Zhang, Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles, Scripta materialia 44 (2001) 1195-1198.
[23] H. Zhang, J.F. Banfield, Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania, Chemistry of materials 14 (2002) 4145-4154.
[24] G. Madras, B.J. McCoy, Kinetic model for transformation from nanosized amorphous TiO2 to anatase, Crystal growth & design 7 (2007) 250-253.
[25] C. Pan, P. Shen, S.Y. Chen, Condensation, crystallization and coalescence of amorphous Al2O3 nanoparticles, Journal of crystal growth 299 (2007) 393-398.
[26] M. Epifani, E. Pellicer, J. Arbiol, N. Sergent, T. Pargnier, J.R. Morante, Capping ligand effects on the amorphous-to-crystalline transition of CdSe nanoparticles, Langmuir 24 (2008) 11182-11188.
[27] P.H. Kien, M.T. Lan, N.T. Dung, P.K. Hung, Annealing study of amorphous bulk and nanoparticle iron using molecular dynamics simulation, International Journal of Modern Physics B 28 (2014) 1450155.
[28] A.V. Evteev, A.T. Kosilov, E.V. Levchenko, O.B. Logachev, Kinetics of isothermal nucleation in a supercooled iron melt, Physics of the Solid State 48 (2006) 815-820.
[29] M. Hirano, K. Shinjo, Atomistic locking and friction, Physical Review B 41 (1990) 11837.
[30] T.P. Duy, V.V. Hoang, Atomic mechanism of homogeneous melting of bcc Fe at the limit of superheating, Physica B: Condensed Matter 407 (2012) 978-984.
[31] P.K. Hung, L.T. Vinh, P.H. Kien, About the diffusion mechanism in amorphous alloys, Journal of Non-Crystalline Solids 356 (2010) 1213-1216.
[32] P.H. Kien, N.T. Thao, P.K. Hung, The local structure and crystallization of FeB nanoparticle, Modern Physics Letters B 28 (2014) 1450246.
[33] Kien Pham Huu, Trang Giap Thi Thuy, Hung Pham Khac, The study of separation of crystal Fe and morphology for FeB nanoparticle: Molecular dynamics simulation, AIP Advances 7 (2017) 045301.
[34] P.H. Kien, P.K. Hung, N.T. Thao, Molecular dynamic simulation of Fe nanoparticles, International Journal of Modern Physics B 29 (2015) 1550035.