Crystallization Pathway for Crystallization of FeB Nanoparticles
Main Article Content
Abstract
In this study, the FeB nanoparticle (NP) consisting of 5,000 particles (4,500 Fe atoms and 500 B atoms) was investigated by means of molecular dynamics (MD) simulation. When the amorphous FeB nanoparticle is annealed at the temperature of 900 K for a long time, it is crystallized into a bcc crystalline structure. The simulation shows that the sample undergoes crystallization via the nucleation mechanism. During the crystallization, B atoms diffuse to the boundary region of Fe crystal. The crystal growth proceeds when this boundary region attains specific properties which are defined by the fraction of B atoms and the energies of AB-atoms and CB-atoms. The study further indicates that the crystalline and mixed FeB nanoparticle consists of three distinct parts including Fe crystalline and two FeB amorphous parts (B-poor and B-rich amorphous parts). The different polymorphs of FeB nanoparticle differ in the local structure, size of Fe crystal and energies of different type atoms.
References
[2] E.V. Levchenko, A.V. Evteev, D.P. Riley, I.V. Belova, G.E. Murch, Molecular dynamics simulation of the alloying reaction in Al-coated Ni nanoparticle, Computational Materials Science 47 (2010) 712-720.
[3] V.V. Hoang, D. Ganguli, Amorphous nanoparticles-Experiments and computer simulations, Physics Reports 518 (2012) 81-140.
[4] K.J. Carroll, J.A. Pitts, Kai Zhang, A. K. Pradhan, E. E. Carpenter, Nonclassical crystallization of amorphous iron nanoparticles by radio frequency methods, Journal of Applied Physics 107 (2010) 09A302.
[5] S. Qin, W. Lei, D. Liu, P. Lamb, Y. Chen, Synthesis of single-crystal nanoparticles of indium oxide by “urea glass” method and their electrochemical properties, Materials letters 91 (2013) 5-8.
[6] R.C. O’Handley, Modern Magnetic Materials: Principles and Applications, Wiley, New York, 2000.
[7] A.L. Oppegard, F.J. Darnell, H.C. Miller, Magnetic properties of single-domain iron and iron-cobalt particles prepared by borohydride reduction, Journal of applied physics 32 (1961) S184-S185.
[8] J. van Wonterghem, S. Morup, C.J.W. Koch, S.W. Charles, S. Wells, Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution, Nature 322 (1986) 622.
[9] A. Yedra, et al., Survey of conditions to produce metal–boron amorphous and nanocrystalline alloys by chemical reduction, Journal of non-crystalline solids 287 (2001) 20-25.
[10] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues, Beating the superparamagnetic limit with exchange bias, Nature 423 (2003) 850-861.
[11] Q.A. Pankhurst, et al., Interfacial exchange pinning in amorphous iron-boron nanoparticles, Physical Review B 69 (2004) 212401.
[12] Z.Y. Hou, L.X. Liu, R.S. Liu, Simulation study on the evolution of thermodynamic, structural and dynamic properties during the crystallization process of liquid Na, Modelling and Simulation in Materials Science and Engineering 17 (2009) 035001.
[13] J.H. Shim, S.C. Lee, B.J. Lee, J.Y. Suh, Y.W. Cho, Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle, Journal of Crystal Growth 250 (2003) 558-564.
[14] V.V. Hoang, N.H. Cuong, Local icosahedral order and thermodynamics of simulated amorphous Fe, Physica B: Condensed Matter 404 (2009) 340-346.
[15] X. Li, J. Huang, Molecular dynamics studies of the kinetics of phase changes in clusters III: structures, properties, and crystal nucleation of iron nanoparticle Fe331, Journal of Solid State Chemistry 176 (2003) 234-242.
[16] J.J. Chu, C.A. Steeves, Thermal expansion and recrystallization of amorphous Al and Ti: A molecular dynamics study, Journal of Non-Crystalline Solids 357 (2011) 3765-3773.
[17] C.B.B. Costa, R.M. Filho, Nanoparticle processes modelling: The role of key parameters for population balances for on-line crystallization processes applications, Powder Technology 202(2010) 89-94.
[18] M. Karaman, M. Aydın, S.H. Sedani , K. Ertuk, R. Turan, Low temperature crystallization of amorphous silicon by gold nanoparticle, Microelectronic Engineering 108 (2013) 112-115.
[19] S. Jungblut, C. Dellago, Crystallization of a binary Lennard-Jones mixture, The Journal of chemical physics 134 (2011) 104501.
[20] H.V. Hue, Crystallization of Amorphous Iron Nano-particles by Means of Molecular Dynamics Simulation, Int J Nano Stud Technol 4 (2015) 88-92.
[21] M. Alcoutlabi, G.B. McKenna, Effects of confinement on material behaviour at the nanometre size scale, Journal of Physics: Condensed Matter 17 (2005) 461-470.
[22] L. Gao, Q. Zhang, Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles, Scripta materialia 44 (2001) 1195-1198.
[23] H. Zhang, J.F. Banfield, Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania, Chemistry of materials 14 (2002) 4145-4154.
[24] G. Madras, B.J. McCoy, Kinetic model for transformation from nanosized amorphous TiO2 to anatase, Crystal growth & design 7 (2007) 250-253.
[25] C. Pan, P. Shen, S.Y. Chen, Condensation, crystallization and coalescence of amorphous Al2O3 nanoparticles, Journal of crystal growth 299 (2007) 393-398.
[26] M. Epifani, E. Pellicer, J. Arbiol, N. Sergent, T. Pargnier, J.R. Morante, Capping ligand effects on the amorphous-to-crystalline transition of CdSe nanoparticles, Langmuir 24 (2008) 11182-11188.
[27] P.H. Kien, M.T. Lan, N.T. Dung, P.K. Hung, Annealing study of amorphous bulk and nanoparticle iron using molecular dynamics simulation, International Journal of Modern Physics B 28 (2014) 1450155.
[28] A.V. Evteev, A.T. Kosilov, E.V. Levchenko, O.B. Logachev, Kinetics of isothermal nucleation in a supercooled iron melt, Physics of the Solid State 48 (2006) 815-820.
[29] M. Hirano, K. Shinjo, Atomistic locking and friction, Physical Review B 41 (1990) 11837.
[30] T.P. Duy, V.V. Hoang, Atomic mechanism of homogeneous melting of bcc Fe at the limit of superheating, Physica B: Condensed Matter 407 (2012) 978-984.
[31] P.K. Hung, L.T. Vinh, P.H. Kien, About the diffusion mechanism in amorphous alloys, Journal of Non-Crystalline Solids 356 (2010) 1213-1216.
[32] P.H. Kien, N.T. Thao, P.K. Hung, The local structure and crystallization of FeB nanoparticle, Modern Physics Letters B 28 (2014) 1450246.
[33] Kien Pham Huu, Trang Giap Thi Thuy, Hung Pham Khac, The study of separation of crystal Fe and morphology for FeB nanoparticle: Molecular dynamics simulation, AIP Advances 7 (2017) 045301.
[34] P.H. Kien, P.K. Hung, N.T. Thao, Molecular dynamic simulation of Fe nanoparticles, International Journal of Modern Physics B 29 (2015) 1550035.