Synthesis and Characterization of Ni2+-doped SnO2 Powders
Main Article Content
Abstract
In this study, SnO2:Ni2+ powders with dopant contents ranging from 0.0 to 12 mol% were synthesized by sol-gel method. The samples were characterized by X-ray diffraction (XRD) Raman spectroscopy, energy-dispersive X-ray spectrometer (EDS) and photoluminescense (PL) spectra. The XRD analysis shows that the samples doped with low Ni- concentrations exhibited single SnO2crystalline phase, whereas the samples doped with high Ni- concentrations exhibited a mixture of SnO2 and NiO phases. The latti ce parameters of the SnO2 host were independent of Ni2+ dopant content, while Raman mode positions were dependent on Ni2+ dopant content. The PL spectrum of the undoped SnO2 was characterized by the emission peaks due to near band edge (NBE) emission and the violet emission peaks associated with surface dangling bonds or oxygen vacancies and Sn interstitials.
References
[2] N.N. Dinh, M.C. Bernard, A.H. Goff, T. Stergiopoulos, P. Falaras, Photoelectrochemical solar cells based on SnO2 nanocrystalline films, C.R.Chimie 9 (2006) 676-683. https://doi.org/10.1016/j.crci.2005.02.042.
[3] K.K. Sharker, M.A. Khan, S.M.M. Khan, R. Islam, Preparation and Characterization of Tin Oxide based Transparent Conducting Coating for Solar Cell Application, Int. J. Thin. Fil. Sci. Tec. 4 (2015) 243-247. http://dx.doi.org/10.12785/ijtfst/040315.
[4] P.K. Mohanta, C. Glökler, A.O. Arenas, L. Jörissen, Sb doped SnO2 as a stable cathode catalyst support for low temperature polymer electrolyte membrane fuel cell, Int. J. Hydrogen Energy 42 (2017) 27950-27961. http://dx.doi.org/10.1016/j.ijhydene.2017.06.064.
[5] B. Cojocaru, D. Avram, V. Kessler, V. Parvulescu, G. Seisenbaeva, C. Tiseanu, Nanoscale insights into Doping behavior, particle size and surface efects in trivalent metal doped SnO2, Sci. Rep.-UK 7 (2017) 1-14. https://doi.org/10.1038/s41598-017-09026-2.
[6] A. Die guez, A. Romano-Rodrı guez, A. Vila, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles, J. Appl. Phys.90 (2001) 1550-1557. https://doi.org/10.1063/1.1385573.
[7] L. Shi, Y. Xu, Q. Li, Controlled fabrication of SnO2 arrays of well-aligned nanotubes and nanowires, Nanoscale 2 (2010) 2104–2108. https://doi.org/10.1039/c0nr00279h.
[8] W. Wan, Y. Li, X. Ren, Y. Zhao, F. Gao, H. Zhao, 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol, Nanomaterials 8 (2018) 1-20. https://doi.org/10.3390/nano8020112.
[9] X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang and J. Yang, Mutual Effects of Fluorine Dopant and Oxygen Vacancies on Structural and Luminescence Characteristics of F Doped SnO2, Nanoparticles Materials 10 (2017) 1-12. https://doi.org/10.3390/ma10121398.
[10] Y.M. Lu, J. Jiang, M. Becker, B. Kramm, L. Chen, A. Polity, Y.B. He, P.J. Klar, B.K. Meyer, Polycrystalline SnO2 films grown by chemical vapor deposition on quartz glass, Vacuum 122B (2015) 347-352. http://dx.doi.org/10.1016/j.vacuum.2015.03.018.
[11] X.S. Peng, L.D. Zhang, G.W. Meng, Y.T. Tian, Y. Lin, Micro-Raman and Infrared properties of Tin Oxide Nanobelts Synthesized from Tin Metal and SiO2 Powders, J. Appl. Phys. 93 (2003) 1760-1763. https://doi.org/10.1063/1.1534903.
[12] R. Liu, Y. Chen, F. Wang, L. Cao, A. Pan, G. Yang, T. Wang, B. Zou, Stimulated emission from trapped excitons in SnO2 nanowires, Physica E 39 (2007) 223–229. https://doi.org/10.1016/j.physe.2007.04.009.
[13] N. Salah, S. Habib, A. Azam, M.S. Ansari, W.M. AL-Shawafi, Formation of Mn-doped SnO2
Nanoparticles Via the Microwave Technique: Structural, Optical and Electrical Properties, Nanomater Nanotechnol 6 (2016) 1-8. https://doi.org/10.5772/62520.
[14] N. Bhardwaj, S. Kuriakose, S. Mohapatra, Structural and optical properties of SnO2 nanotowers and interconnected nanowires prepared by carbothermal reduction method, J. Alloys Compd. 592 (2014) 238–243. http://dx.doi.org/10.1016/j.jallcom.2013.12.268.
[15] S.H. Luo, Q.Wan, W.L. Liu, M. Zhang, Z.T. Song, C.L. Lin, P.K. Chu, Photoluminescence properties of SnO2 nanowhiskers grown by thermal evaporation, Prog. Solid State Chem. 33 (2005) 287-292. https://doi.org/10.1016/j.progsolidstchem.2005.11.008.