Improvement of Critical Current Density in Bi-2223 Superconductor by Ag-Doping
Main Article Content
Abstract
In this study, high-Tc superconducting polycrystalline Bi-2223 undoped sample (A0) and 5wt.% Ag-doped sample (A5) were prepared by solid-state reaction method at 8550C with sintering time of 8 days. The X-ray powder diffraction (XRD) results show that the major phase of these samples was Bi-2223. The volume ratio of Bi-2223 phase increased from 78% for undoped sample (A0) to 95% for 5wt.% Ag-doped sample (A5). The enhancement of the onset of high-Tc superconductivity (Tc,onset= 112.5 K) in silver doping sample was observed by DC-resistivity measurements. From the AC-susceptibility measurements combined with Bean critical state model, the temperature dependent parabolic law of inter-granular or matrix critical current density (Jcm) was fitted. Some Jcm values were estimated from these parabolic laws. The results show that 5wt% Ag-doping can nearly double critical current density in the Bi-2223 sample.
References
[2] G. Logvenov, A. Gozar, I. Bozovic, High-Temperature Superconductivity in a Single Copper-Oxygen Plane, Science 326, (2009) 699-702 https://doi.org/10.1126/science.1178863.
[3] Takenori Fujii, Ichiro Terasaki, Takao Watanabe, Azusa Matsuda, Doping dependence of anisotropic resistivities in the trilayered superconductor Bi2Sr2Ca2Cu3O10+δ, Phys. Rev. B 66 (2002) 024507,
https://doi.org/10.1103/PhysRevB.66.024507.
[4] E. Pavarini, T.S. Dasgupta, O. Jepsen, O.K. Adersen, Band-Structure Trend in Hole-Doped Cuprates and Correlation with Tcmax, Phys. Rev. Lett. 87 (2001) 047003, https://doi.org/10.1103/PhysRevLett.87.047003
[5] B.W. Statt, L.M. Song, Screening of the middle CuO2 layer in Bi1.6Pb0.4Sr2Ca2Cu3O10 determined from Cu NMR, Phys. Rev. B 48 (1993) 3536-3539, https://doi.org/10.1103/PhysRevB.48.3536.
[6] V.J. Emery, S.A. Kivelson, Importance of phase fluctuations in superconductors with small superfluid density, Nature 374 (1995) 434-437, doi:10.1038/374434a0.
[7] S.N. Ekbote, G.K. Padam, M. Sharma, N.K. Arora, B.S. Khurana, R.C. Goel, D.K. Suri, N. Mehra, B.K. Das, Preparation and characterization of Ag-added Bi1.84Pb0.4Sr2Ca2.2Cu3O10+x bulk tube conductors for cryogen free superconducting magnet, Bull. Mater. Sci., Vol. 24, No. 6, (2001) 603–609, https://doi.org/10.1007/BF02704008
[8] S.X. Dou, K.H. Song, H.K. Liu, C.C. Sorrell, M.H. Apperly, N. Savvides, Superconductivity in a Ag‐doped Bi‐Pb‐Sr‐Ca‐Cu‐O system, Appl. Phys. Lett. 56, (1990) 493-494, https://doi.org/10.1063/1.103298.
[9] T.D. Hien, N.D. Minh, N.K. Man, N.H. Sinh, Some critical characteristics of Ag-doped Bi-2223 superconductors from magnetic hysteresis loop measurements, Physics & Engineering in Evolution, Proceedings of the Fifth Vietnamese-Greman Seminar on Physics and Engineering, No. 188/2002/XBNT/VHTT, Hanoi (2002) 136-140.
[10] S.A. Halim, S.A. Khawaldeh, S.B. Mohamed, A. Azhan, Superconducting properties of Bi2−xPbxSr2Ca2Cu3Oy system derived via sol–gel and solid state routes, Mater. Chem. & Phys. 61, (1999) 251-259.
[11] C.Y. Lee, Y.H. Kao, Frequency dependence of the intergranular energy-loss peak in AC magnetic susceptibility of high-Tc superconductors, Physica C 256, (1996) 183-190, https://doi.org/10.1016/0921-4534(95)00639-7.
[12] C.B. Bean, Magnetization of High-Field Superconductors, Rev. Mod. Phys. 36 (1964) 31-39, https://doi.org/10.1103/RevModPhys.36.31.
[13] S. Celebi, I. Karaca, E. Aksu, A. Grencer, Frequency dependence of the intergranular AC loss peak in a high-Tc Bi–(Pb)–Sr–Ca–Cu–O bulk superconductor, Physica C 309, (1998) 131-137, https://doi.org/10.1016/S0921-4534(98)00531-0.
[14] H. Salamati, P. Kameli, The effect of Bi2212 phase on the weak link behavior of Bi2223 superconductors, Physica C 403 (2004) 60-66, DOI: 10.1016/j.physc.2003.11.009.
[15] M.H. Mohammed, R. Awad, A.I. Abou-Aly, I.H. Ibrahim, M.S. Hassan, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications 3 (2012) 224-233, DOI: 10.4236/msa.2012.34033.
[16] O. Bilgili, Y. Selamet, K. Kocabas, Effects of Li Substitution in Bi-2223 Superconductors, J. Supercond. Nov. Magn. 21 (2008) 439-449, DOI: 10.1007/s10948-008-0374-4.
[17] A.V. Narlikar, Studies of high temperature superconductors, Vol. 35 (The BSCCO system), Nova Science Publishers, Inc, ISNB 1-5672-789-6, New York, (2000).
[18] A. Oota, A. Kirihigashi,Y. Sasaki, K. Ohba, Growth Process of the (2223) Phase in Pb-Added Bi-Sr-Ca-Cu-O, Japn. J.Appl. Phys. 27 (1988) L2289, https://doi.org/10.1143/JJAP.28.L1171.
[19] M. Muralidhar, K.N. Kishore, M. Nagashushanam, V.H. Babu, Role of Silver on Superconducting Properties of BPSCCO (2223) System, Crys. Res. Technol. 28, (1993) 653-663, https://doi.org/10.1002/crat.2170280515.
[20] H. Comert, M. Altunbag, T.D. Dzhafarov, T. Kusukomeroglu, Y.G. Asadov, H. Karal, The effect of Ag diffusion on the crystal structure and electrical properties of Bi(Pb)SrCaCuO superconductors, Supercond. Sci. Technol.7 (1994) 824-827, https://doi.org/10.1088/0953-2048/7/11/009.
[21] P. Kameli, H. Salamati, M. Eslami, The effect of sintering temperature on the intergranular properties of Bi2223 superconductors, Solid State Commun. 137 (2006) 30-35, https://doi.org/10.1016/j.ssc.2005.10.026.
[22] Nguyen Khac Man, Enhancement of Superconducting Critical Temperature in Bi(Pb)-Sr-Ca-Cu-O System
by Li-Doping, Journal of Science &Technology 135 (Technical Universities) (2019) 60-66.