Tran Thi Ha, Nguyen Manh Hong, Mai Hong Hanh, Pham Van Thanh, Sai Cong Doanh, Nguyen Thanh Binh, Pham Nguyen Hai, Nguyen Trong Tam, Ho Khac Hieu, Nguyen Viet Tuyen

Main Article Content

Abstract

Thanks to unique Raman spectra of chemical substances, a growing number of applications in environmental and biomedical fields based on Raman scattering has been developed. However, the low probability of Raman scattering hindered its potential development and thus, many different techniques were developed to enhance Raman signal. A key step of surface-enhanced Raman scattering technique is to prepare active SERS substrate from noble metals. The main enhancement mechanism is electromagnetic enhancement resulted from surface plasmon resonance. The disadvantages of nanoparticles based SERS substrates include high randomness due to self - assembly process of nanoparticles. Recently, a new kind of SERS substrates with order nanostructures of semiconductors combining with noble metals can serve as active SERS substrates, which are expected to possess high enhancement of Raman signals. In this study, ordered ZnO nanorods were first prepared by galvanic hydrothermal method and gold was sputtered on the as prepared ZnO nanomaterials to enhance Raman. Our SERS substrates exhibit promising high enhancement factors and can detect chemical substances at concentration in nano molar range.

Keywords: ZnO, nanorods, Raman scattering, hydrothermal, galvanic effect.

References

[1] B.B. Karakoçak, R. Raliya, J.T. Davis, S. Chavalmane, W.N. Wang, N. Ravi, P. Biswas, Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line, Toxicol. Vitr. 37 (2016) 61–69.
doi:10.1016/j.tiv.2016.08.013.
[2] H. Gebavi, D. Ristić, N. Baran, L. Mikac, V. Mohaček-Grošev, M. Gotić, M. Šikić, M. Ivanda, Horizontal silicon nanowires for surface-enhanced Raman spectroscopy, Mater. Res. Express. 5 (2018) 015015(1)-015015(8). doi:10.1088/2053-1591/aaa152.
[3] B.S. Lee, D.Z. Lin, T.J. Yen, A low-cost, highly-stable surface enhanced raman scattering substrate by si nanowire arrays decorated with au nanoparticles and Au backplate, Sci. Rep. 7 (2017) 1–7. doi:10.1038/s41598-017-04062-4.
[4] X. Zhao, W. Zhang, C. Peng, Y. Liang, W. Wang, Sensitive surface-enhanced Raman scattering of TiO2/Ag nanowires induced by photogenerated charge transfer, J. Colloid Interface Sci. 507 (2017) 370–377. doi:10.1016/j.jcis.2017.08.023.
[5] N.V. Tuyen, T.D. Canh, N.N. Long, N.X. Nghia, B.N.Q. Trinh, Z. Shen, Synthesis of undoped and M-doped ZnO (M Co, Mn) nanopowder in water using microwave irradiation, J. Phys. Conf. Ser. 187 (2009) 1–7. doi:10.1088/1742-6596/187/1/012020.
[6] T.D. Canh, N.V. Tuyen, N.N. Long, Influence of solvents on the growth of zinc oxide nanoparticles fabricated by microwave irradiation, VNU Journal of Science: Mathematics and Physics 25 (2009) 71–76.
[7] N.T. Huong, N.V. Tuyen, N.H. Hong, Structural properties of P-doped ZnO, Mater. Chem. Phys. 126 (2011) 54–57. doi:10.1016/j.matchemphys.2010.12.012.
[8] P.V. Thanh, L.T.Q. Nhu, H.H. Mai, N.V. Tuyen, S.C. Doanh, N.C. Viet, D.T. Kien, Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor, J. Electron. Mater. 46 (2017) 3732–3737. doi:10.1007/s11664-017-5369-0.
[9] N.V. Tuyen, N.N. Long, T.T.Q. Hoa, N.X. Nghia, D.H. Chi, K. Higashimine, T. Mitani, T.D. Canh, Indium-doped zinc oxide nanometre thick disks synthesised by a vapour-phase transport process, J. Exp. Nanosci. 4 (2009) 243–252. doi:10.1080/17458080802627482.
[10] H.H. Mai, V.T. Pham, V.T. Nguyen, C.D. Sai, C.H. Hoang, T.B. Nguyen, Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods, J. Electron. Mater. 46 (2017) 3714–3719. doi:10.1007/s11664-017-5300-8.
[11] R. Sánchez Zeferino, M. Barboza Flores, U. Pal, Photoluminescence and raman scattering in ag-doped zno nanoparticles, J. Appl. Phys. 109 (2011). doi:10.1063/1.3530631.
[12] L.N. Wang, L.Z. Hu, H.Q. Zhang, Y. Qiu, Y. Lang, G.Q. Liu, J.Y. Ji, J.X. Ma, Z.W. Zhao, Studying the Raman spectra of Ag doped ZnO films grown by PLD, Mater. Sci. Semicond. Process. 14 (2011) 274–277. doi:10.1016/j.mssp.2011.05.004.
[13] L.N. Dem’yanets, R.M. Zakalyukin, B.N. Mavrin, Growth and Raman spectra of doped ZnO single crystals, Inorg. Mater. 47 (2011) 649–653. doi:10.1134/s0020168511060070.
[14] T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, Enhanced photoluminescence and Raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass, PLoS One. 10 (2015) 1–18. doi:10.1371/journal.pone.0121756.
[15] G.N. Xiao, S.Q. Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles, Chem. Phys. Lett. 447 (2007) 305–309. doi:10.1016/j.cplett.2007.09.045.
[16] S. Dutta Roy, M. Ghosh, J. Chowdhury, Adsorptive parameters and influence of hot geometries on the SER(R) S spectra of methylene blue molecules adsorbed on gold nanocolloidal particles, J. Raman Spectrosc. 46 (2015) 451–461. doi:10.1002/jrs.4675.
[17] S.H.A. Nicolai, J.C. Rubim, Surface-enhanced resonance Raman (SERR) spectra of methylene blue adsorbed on a silver electrode, Langmuir. 19 (2003) 4291–4294. doi:10.1021/la034076v.