Fabrication of Organic Solar Cell Utilizing Mixture of Solution-processable Phthalocyanine and Fullerene Derivative with Processing Additive Solvent
Main Article Content
Abstract
We demonstrate an efficient bulk heterojunction (BHJ) organic solar cell (OSCs) utilizing a soluble phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), and a fullerene derivative, 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C71 and roles of processing additive solvent on improvement of the BHJ OSCs. By adding processing additive solvent, filling factor and short-circuit current density are improved to 0.57 and 8.6 mA/cm2, respectively. As a result, the power conversion efficiency of 3.6% is achieved. Otherwise, the effects of processing additive solvent are demonstrated by taking the absorption and photoluminescence spectra of C6PcH2 and composite thin films into account.
Keywords:
Phthalocyanine, organic solar cells, thin film, small molecule, processing additive.
References
[1] R. Ilmi, A. Haque, M.S. Khan, High efficiency small molecule-based donor materials for organic solar cells, Org. Electron. 58 (2018) 53-62.
[2] L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, RH. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics, Science 293 (2001) 1119-1122.
[3] Y. Wang, M. Chang, B. Kan, X. Wan, C. Li, Y. Chen, All-Small-Molecule Organic Solar Cells Based on Pentathiophene Donor and Alkylated Indacenodithiophene-Based Acceptors with Efficiency over 8% ACS Appl. Energy Mater. 1 (2018) 2150−2156.
[4] Y. Huo, H.-L. Zhang, X. Zhan, Nonfullerene All-Small-Molecule Organic Solar Cells, ACS Energy Lett. 4 (2019) 1241−1250
[5] A.K.K. Kyaw, D.H. Wang, D. Wynands, J. Zhang, T.-Q. Nguyen, G.C. Bazan, A.J. Heeger, Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells, Nano Lett. 13 (2013) 3796-3801.
[6] T.S. van der Poll, J.A. Love, T.-Q. Nguyen, G.C. Bazan, Non-basic high-performance molecules for solution-processed organic solar cells, Adv. Mater. 24 (2012) 3646-3649.
[7] S. Sergeyev, W. Pisulab, Y.H. Geerts, Discotic liquid crystals: a new generation of organic semiconductors, Chem. Soc. Rev. 36 (2007) 1902-1929.
[8] Y. Miyake, Y. Shiraiwa, K. Okada, H. Monobe, T. Hori, N. Yamasaki, H. Yoshida, M.J. Cook, A. Fujii, M. Ozaki, Y. Shimizu, High carrier mobility up to 1.4 cm2V-1s-1 in non-peripheral phthalocyanine, Appl. Phys. Express 4, (2011) 021604-1-021604-3.
[9] Z. An, J. Yu, S.C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Prins, L.D.A. Siebbeles, B. Kippelen, High electron mobility in room-temperature discotic liquid-crystalline perylene diimides, S. R. Marder, Adv. Mater. 17 (2005) 2580-2583.
[10] Q.-D. Dao, T. Hori, T. Masuda, K. Fukumura, T. Kamikado, F. Nekelson, A. Fujii, Y. Shimizu, M. Ozaki Mechanism of Degradation and Improvement of Stability on Mesogenic-Phthalocyanine-Based Bulk Heterojunction Solar Cell, Jpn. J. Appl. Phys. 52 (2013) 012301-1-012301-5.
[11] Q.-D. Dao, T. Hori, K. Fukumura, T. Masuda, T. Kamikado, A. Fujii, Y. Shimizu, M. Ozaki, Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives, Appl. Phys. Lett. 101 (2012) 263301-1-263301-4.
[12] Q.-D. Dao, A. Fujii, M. Ozaki, Fabrication of tandem solar cells with all-solution processed multilayer structure using non-peripherally substituted octahexyl tetrabenzotriazaporphyrins, Jpn. J. Appl. Phys. 55 (2016) 03DB01-1-03DB01-6.
[13] Q.-D. Dao, T. Uno, M. Ohmori, K. Watanabe, H. Itani, A. Fujii, Y. Shimizu, M. Ozaki, Effects of thermal-annealing and processing-additive treatment on crystallization-induced phase separation in organic solar cells utilizing octapentyl tetrabenzotriazaporphyrins, J. Phys. D: Appl. Phys. 48 (2015) 385103-1-385103-5.
[14] Q.-D. Dao, T. Hori, K. Fukumura, T. Masuda, T. Kamikado, A. Fujii, Y. Shimizu, M. Ozaki, Effects of processing additives on nanoscale phase separation, crystallization and photovoltaic performance of solar cells based on mesogenic phthalocyanine, Org. Electron. 14 (2013) 2628–2634.
[15] J.C. Swarts, E.H.G. Langner, N. Krokeide-Hove, M.J. Cook, Synthesis and electrochemical characterisation of some long chain 1,4,8,11,15,18,22,25-octa-alkylated metal-free and zinc phthalocyanines possessing discotic liquid crystalline properties, J. Mater. Chem.11 (2001) 434-443.
[16] S.M. Critchley, M.R. Willis, M.J. Cook, J. McMurdo, Y. Maruyama, Deposition of Ordered Phthalocyanine Films by Spin Coating, J. Mater. chem., 2(2) (1992) 157-159.
[17] J. Mack, M.J. Stillman, N. Kobayashi, Application of MCD spectroscopy to porphyrinoids, Coordination Chemistry Reviews 251 (2007) 429-453.
[18] S. Morita, A.A. Zakhidov, K. Yoshino, Doping effect of buckminsterfullerence in conducting polymer: change of absorption spectrum and quenching of luminescence, Solid State Commun. 82 (1992) 249-252.
[19] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene, Science 258 (1992) 1474-1476.
[20] K. Yoshino, X.H. Yin, S. Morita, T. Kawai, A.A. Zakhidov, Enhanced photoconductivity of C60 doped poly(3-alkylthiophene), Solid State Commun. 85 (1993) 85-88.
[2] L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, RH. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics, Science 293 (2001) 1119-1122.
[3] Y. Wang, M. Chang, B. Kan, X. Wan, C. Li, Y. Chen, All-Small-Molecule Organic Solar Cells Based on Pentathiophene Donor and Alkylated Indacenodithiophene-Based Acceptors with Efficiency over 8% ACS Appl. Energy Mater. 1 (2018) 2150−2156.
[4] Y. Huo, H.-L. Zhang, X. Zhan, Nonfullerene All-Small-Molecule Organic Solar Cells, ACS Energy Lett. 4 (2019) 1241−1250
[5] A.K.K. Kyaw, D.H. Wang, D. Wynands, J. Zhang, T.-Q. Nguyen, G.C. Bazan, A.J. Heeger, Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells, Nano Lett. 13 (2013) 3796-3801.
[6] T.S. van der Poll, J.A. Love, T.-Q. Nguyen, G.C. Bazan, Non-basic high-performance molecules for solution-processed organic solar cells, Adv. Mater. 24 (2012) 3646-3649.
[7] S. Sergeyev, W. Pisulab, Y.H. Geerts, Discotic liquid crystals: a new generation of organic semiconductors, Chem. Soc. Rev. 36 (2007) 1902-1929.
[8] Y. Miyake, Y. Shiraiwa, K. Okada, H. Monobe, T. Hori, N. Yamasaki, H. Yoshida, M.J. Cook, A. Fujii, M. Ozaki, Y. Shimizu, High carrier mobility up to 1.4 cm2V-1s-1 in non-peripheral phthalocyanine, Appl. Phys. Express 4, (2011) 021604-1-021604-3.
[9] Z. An, J. Yu, S.C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Prins, L.D.A. Siebbeles, B. Kippelen, High electron mobility in room-temperature discotic liquid-crystalline perylene diimides, S. R. Marder, Adv. Mater. 17 (2005) 2580-2583.
[10] Q.-D. Dao, T. Hori, T. Masuda, K. Fukumura, T. Kamikado, F. Nekelson, A. Fujii, Y. Shimizu, M. Ozaki Mechanism of Degradation and Improvement of Stability on Mesogenic-Phthalocyanine-Based Bulk Heterojunction Solar Cell, Jpn. J. Appl. Phys. 52 (2013) 012301-1-012301-5.
[11] Q.-D. Dao, T. Hori, K. Fukumura, T. Masuda, T. Kamikado, A. Fujii, Y. Shimizu, M. Ozaki, Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives, Appl. Phys. Lett. 101 (2012) 263301-1-263301-4.
[12] Q.-D. Dao, A. Fujii, M. Ozaki, Fabrication of tandem solar cells with all-solution processed multilayer structure using non-peripherally substituted octahexyl tetrabenzotriazaporphyrins, Jpn. J. Appl. Phys. 55 (2016) 03DB01-1-03DB01-6.
[13] Q.-D. Dao, T. Uno, M. Ohmori, K. Watanabe, H. Itani, A. Fujii, Y. Shimizu, M. Ozaki, Effects of thermal-annealing and processing-additive treatment on crystallization-induced phase separation in organic solar cells utilizing octapentyl tetrabenzotriazaporphyrins, J. Phys. D: Appl. Phys. 48 (2015) 385103-1-385103-5.
[14] Q.-D. Dao, T. Hori, K. Fukumura, T. Masuda, T. Kamikado, A. Fujii, Y. Shimizu, M. Ozaki, Effects of processing additives on nanoscale phase separation, crystallization and photovoltaic performance of solar cells based on mesogenic phthalocyanine, Org. Electron. 14 (2013) 2628–2634.
[15] J.C. Swarts, E.H.G. Langner, N. Krokeide-Hove, M.J. Cook, Synthesis and electrochemical characterisation of some long chain 1,4,8,11,15,18,22,25-octa-alkylated metal-free and zinc phthalocyanines possessing discotic liquid crystalline properties, J. Mater. Chem.11 (2001) 434-443.
[16] S.M. Critchley, M.R. Willis, M.J. Cook, J. McMurdo, Y. Maruyama, Deposition of Ordered Phthalocyanine Films by Spin Coating, J. Mater. chem., 2(2) (1992) 157-159.
[17] J. Mack, M.J. Stillman, N. Kobayashi, Application of MCD spectroscopy to porphyrinoids, Coordination Chemistry Reviews 251 (2007) 429-453.
[18] S. Morita, A.A. Zakhidov, K. Yoshino, Doping effect of buckminsterfullerence in conducting polymer: change of absorption spectrum and quenching of luminescence, Solid State Commun. 82 (1992) 249-252.
[19] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene, Science 258 (1992) 1474-1476.
[20] K. Yoshino, X.H. Yin, S. Morita, T. Kawai, A.A. Zakhidov, Enhanced photoconductivity of C60 doped poly(3-alkylthiophene), Solid State Commun. 85 (1993) 85-88.