Ho Thi Anh, Nguyen Ngoc Huyen, Pham Duc Thang

Main Article Content

Abstract

Nd0.6Sr0.4MnO3 sample was fabricated by a solid-state reaction method and its magnetic, magnetocaloric properties were investigated. The Curie temperature, TC, at which a ferromagnetic-paramagnetic transition occurred was found to be of about 270 K. An analysis using the Banejee’s criterion of the experiment results for magnetization as a function of temperature and magnetic field and the universal curves of the normalized entropy change versus reduced temperature indicated that the sample undergo the second-order magnetic phase transition. Furthermore, the maximum magnetic entropy change that occurred near TC, measured at a magnetic field span of 50 kOe was found to be of about 6.0 J/kg.K, corresponding to a relative cooling power of 250 J/kg. These values are comparable to those of other manganites.

Keywords: Perovskite manganites, Magnetocaloric effect, Universal entropy.

References

D.N.H. Nam, R. Mathieu, P. Nordblad, N.V. Khiem, N.X. Phuc, Ferromagnetism and frustration in Nd0.7Sr0.3MnO3, Phys. Rev. B 62(2000) 1027-1032. https://doi.org/10.1103/PhysRevB.62.1027.
[2] X. Moya, L.E. Hueso, F. Maccherozzi, A.I. Tovstolytkin, D.I. Podyalovskii, C. Ducati, et al., Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain, Nat. Mater. 2(2013) 52-58.
https://doi.org/10.1038/nmat3463.
[3] A. Dhahri, F.I.H. Rhouma, S. Mnefgui, J. Dhahri, E.K. Hlil, Room temperature critical behavior and magnetocaloric properties of La0.6Nd0.1(CaSr)0.3Mn0.9V0.1O3, Ceram. Int. 40(2014) 459-464.
https://doi.org/10.1016/j.ceramint.2013.06.024.
[4] M.-H. Phan, S.-C. Yu, Review of the magnetocaloric effect in manganite materials, J. Magn. Magn. Mater 308(2007) 325-340. https://doi.org/10.1016/j.jmmm.2006.07.025.
[5] C. Zener, Interaction between the d-shells in the transition metals. II. ferromagnetic compounds of manganese with perovskite structure, Phys. Rev. B 82(1951) 403-408. https://doi.org/10.1103/PhysRev.82.403.
[6] A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1-xSrxMnO3, Phys. Rev. Lett. 74(1995) 5144-5147. https://doi.org/10.1103/PhysRevLett.74.5144.
[7] M.B. Salamon, P. Lin, S.H. Chun, Colossal magnetoresistance is a griffiths singularity, Phys. Rev. Lett. 88 (2002) 197203-197206. https://doi.org/10.1103/PhysRevLett.88.197203.
[8] L. Demkó, I. Kézsmárki, G. Mihály, N. Takeshita, Y. Tomioka, and Y. Tokura, Multicritical end point of the first-order ferromagnetic transition in colossal magnetoresistive manganites, Phys. Rev. Lett. 101(2008) 037206-037209. https://doi.org/10.1103/PhysRevLett.101.037206.
[9] A. Munoz, J.A. Alonso, M.J. Martinez-Lope, J.L. Garcia-Munoz, M.T. Fernandez-Diaz, Magnetic structure evolution of NdMnO3 derived from neutron diffraction data, J. Phys.: Condens. Matter 12 (2000) 1361-1368.
https://doi.org/10.1088/0953-8984/12/7/319.
[10] R. Venkatesh, M. Pattabiraman, K. Sethupathi, G. Rangarajan, S. Angappane, and J.-G. Park, Tricritical point and magnetocaloric effect of Nd1-xSrxMnO3, J. Appl. Phys. 103(2008) 07B319-07B322.
https://doi.org/10.1063/1.2832412.
[11] R. Venkatesh, M. Pattabiraman, S. Angappane, G. Rangarajan, K. Sethupathi, J. Karatha, Complex ferromagnetic state and magnetocaloric effect in single crystalline Nd0.7Sr0.3MnO3, Phys. Rev. B 75 (2007) 224415-224418.
https://doi.org/10.1103/PhysRevB.75.224415.
[12] R.S. Freitas, L. Ghivelder, F. Damay, F. Dias, L.F. Cohen, Magnetic relaxation phenomena and cluster glass properties of La0.7−xYxCa0.3MnO3 manganites, Phys. Rev. B 64 (2001) 144404-144407.
https://doi.org/10.1103/PhysRevB.64.144404.
[13] T.A. Ho, S.H. Lim, C.M. Kim, M.H. Jung, T.O. Ho, P.T. Tho, Magnetic and magnetocaloric properties of La0.6Ca0.4-xCexMnO3, J. Magn. Magn. Mater 438(2017) 52-59. https://doi.org/10.1016/j.jmmm.2017.04.038.
[14] T.A. Ho, S.H. Lim, P.T. Tho, T.L. Phan, S.C. Yu, Magnetic and magnetocaloric properties of La0.7Ca0.3Mn1−xZnxO3, J. Magn. Magn. Mater 426(2017) 18-24. https://doi.org/10.1016/j.jmmm.2016.11.050.
[15] T.-L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, First to second order magnetic phase transition La0.7Ca0.3-xBaxMnO3 exhibiting large magnetocaloric effect, J. Alloys Compd. 657(2016) 818-834. https://doi.org/10.1016/j.jallcom.2015.10.162.
[16] T.A. Ho, D.-T. Quach, T.D. Thanh, T.O. Ho, M.H. Phan, T.L. Phan, Magnetocaloric effect and critical behavior in a disordered ferromagnet La0.7Sr0.3Mn0.9Ti0.1O3, IEEE Trans. Magn. 51(2015) 2501304-2501307.
https://doi.org/10.1109/TMAG.2015.2436383.
[17] A. Arrott., Criterion for ferromagnetism from observations of magnetic isotherms, Phys. Rev. 108(1957) 1394-1397. https://doi.org/10.1103/PhysRev.108.1394.
[18] S.K. Banerjee, On a generalised approach to first and second order magnetic transitions, Phys. Lett.12 (1964) 16-22. https://doi.org/10.1016/0031-9163(64)91158-8.
[19] V. Franco, J. S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change, Appl. Phys. Lett. 89 (2006) 222512-222517. https://doi.org/10.1063/1.2399361.
[20] N.S. Bingham, M.H. Phan, H. Srikanth, T.M.A., C. Leighton, Magnetocaloric effect and refrigerant capacity in charge-ordered manganites, J. Appl. Phys. 106(2009) 023909-023914. https://doi.org/10.1063/1.3174396.
[21] A. Szewczyk, H. Szymczak, A. Wisniewski, K. Piotrowski, R. Kartaszynski, B. Dabrowski, et al., Magnetocaloric effect in La1−xSrxMnO3 for x=0.13 and 0.16, Appl. Phys. Lett. 77(2000) 1026-1029.
https://doi.org/10.1063/1.1288671.
[22] M.H. Phan, H.X. Peng, S.C. Yu, N. Tho, N. Chau, Large magnetic entropy change in Cu-doped manganites, J. Magn. Magn. Mater. 285(2005) 199-203. https://doi.org/10.1016/j.jmmm.2004.07.041.
[23] B. Arayedh, S.Kallel, N. Kallel, O.Pena, Influence of non-magnetic and magnetic ions on the magnetocaloric properties of La0.7Sr0.3Mn0.9M0.1O3, J. Magn. Magn. Mater 361(2014) 68-73.
https://doi.org/10.1016/j.jmmm.2014.02.075.
[24] D.T. Morelli, A.M. Mance, J.V. Mantese, A.L. Micheli, Magnetocaloric properties of doped lanthanum manganite films, J. Appl. Phys. 79 (1996) 373-376. https://doi.org/10.1063/1.360840.
[25] V. Franco, A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials, Int. J. Refri. 33(2010) 465-473.
https://doi.org/10.1016/j.ijrefrig.2009.12.019.
[26] V. Franco, J.S. Blazquez., A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change, Appl. Phys. Lett. 89(2006) 222512-222515. https://doi.org/10.1063/1.2399361.