Nguyen Van Chuong, Nguyen Ngoc Hieu, Nguyen Van Hieu

Main Article Content

Abstract

This paper constructs a new type of two-dimensional graphene-like Janus GaInSTe monolayer and systematically investigates its structural and electronic properties as well as the effect of external electric field using first-principles calculations. In the ground state, Janus GaInSTe monolayer is dynamically stable with no imaginary frequencies in its phonon spectrum and possesses a direct band gap semiconductor. The band gap of Janus GaInSTe monolayer can be tuned by applying an electric field, which leads the different transitions from semiconductor to metal, and from indirect to direct band gap. These findings show a great potential application of Janus GaInSTe material for designing next-generation devices.

Keywords: Graphene, two-dimensional materials, Janus GaInSTe, first-principles calculations, electric field.

References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, Vol. 306, No. 5696, 2004, pp. 666–669, https://doi.org/10.1126/science.1102896.
[2] A. K. Geim, K. S. Novoselov, The Rise of Graphene, Nat. Mater., Vol. 6, No. 3, 2007, pp. 183–191, https://doi.org/10.1038/nmat1849.
[3] M. Jang, H. Kim, Y. Son, H. Atwater, W. Goddard, Graphene Field Effect Transistor without an Energy Gap, Proc. Natl. Acad. Sci., Vol. 110, No. 22, 2013, pp. 8786–8789, https://doi.org/10.1073/pnas.1305416110.
[4] A. Avetisyan, B. Partoens, F. M. Peeters, Electric Field Tuning of the Band Gap in Graphene Multilayers, Phys. Rev. B, Vol. 79, No. 3, 2009, pp. 035421–035627, https://doi.org/10.1103/PhysRevB.79.035421.
[5] C. V. Nguyen, M. Idrees, H. V. Phuc, N. N. Hieu, N. T. T. Binh, B. Amin, T. V. Vu, Interlayer Coupling and Electric Field Controllable Schottky Barriers and Contact Types in Graphene/PbI2 Heterostructures, Phys. Rev. B, Vol. 101, No. 23, 2020, pp. 235419–235426, https://doi.org/10.1103/PhysRevB.101.235419.
[6] T. V. Vu, N. N. Hieu, H. V. Phuc, N. V. Hieu, H. D. Bui, M. Idrees, B. Amin, C. V. Nguyen, Graphene/WSeTe van der Waals Heterostructure: Controllable Electronic Properties and Schottky Barrier via Interlayer Coupling and Electric Field, Appl. Surf. Sci., Vol. 507, 2020, pp. 145036–145045, https://doi.org/10.1016/j.apsusc.2019.145036.
[7] A. Hussain, S. Ullah, M. A. Farhan, Fine Tuning the Band-Gap of Graphene by Atomic and Molecular Doping: A Density Functional Theory Study, RSC Adv., Vol. 6, No. 61, 2016, pp. 55990–56003, https://doi.org/10.1039/C6RA04782C.
[8] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, Z. Xu, D. Tomanek, P. D. Ye, Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility, ACS Nano, Vol. 8, No. 4, 2014, pp. 4033–4041, https://doi.org/10.1021/nn501226z.
[9] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, 2D Transition Metal Dichalcogenides, Nat. Rev. Mater., Vol. 2, No. 8, 2017, pp. 17033–17047. https://doi.org/10.1038/natrevmats.2017.33.
[10] P. Vogt, P. D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, G. L. Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett., Vol. 108, No. 15, 2012, pp. 155501–155505, https://doi.org/10.1103/PhysRevLett.108.155501.
[11] A. Lu, H. Zhu, J. Xiao, C. Chuu, Y. Han, M. Chiu, C. Cheng, C. Yang, K. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, L. J. Li, Janus Monolayers of Transition Metal Dichalcogenides, Nat. Nanotechnol., Vol. 12, No. 8, 2017, pp. 744–749, https://doi.org/10.1038/nnano.2017.100.
[12] W. Wan, S. Zhao, Y. Ge, Y. Liu, Phonon and Electron Transport in Janus Monolayers based on InSe, J. Phys. Condens. Matter, Vol. 31, No. 43, 2019, pp. 435501–435511, https://doi.org/10.1088/1361-648X/ab2e7d.
[13] A. Huang, W. Shi, Z. Wang, Optical Properties and Photocatalytic Applications of Two-Dimensional Janus Group-III Monochalcogenides, J. Phys. Chem. C, Vol. 123, No. 18, 2019, pp. 11388–11396, https://doi.org/10.1021/acs.jpcc.8b12450.
[14] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. D. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L.M. Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, J. Phys. Condens. Matter, Vol. 21, No. 39, 2009, pp. 395502–395521, https://doi.org/10.1088/0953-8984/21/39/395502.
[15] P. E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, Vol. 50, No. 24, 1994, pp. 17953–17979, https://doi.org/10.1103/PhysRevB.50.17953.
[16] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., Vol. 77, No. 18, 1996, pp. 3865–3868, https://doi.org/10.1103/PhysRevLett.77.3865.
[17] J. Heyd, G. E. Scuseria, Efficient Hybrid Density Functional Calculations in Solids: Assessment of the Heyd–Scuseria–Ernzerhof Screened Coulomb Hybrid Functional, J. Chem. Phys., Vol. 121, No. 3, 2004, pp. 1187–1192, https://doi.org/10.1063/1.1760074.
[18] A. Carrerasa, A. Togo, I. Tanaka, Dynaphopy: A Code for Extracting Phonon Quasiparticles from Molecular Dynamics Simulations, Comput. Phys. Commun., Vol. 221, 2017, pp. 221–234, https://doi.org/10.1016/j.cpc.2017.08.017.
[19] K. D. Pham, N. N. Hieu, H. V. Phuc, I. A. Fedorov, C. A. Duque, B. Amin, C. V. Nguyen, Layered Graphene/GaS van der Waals Heterostructure: Controlling the Electronic Properties and Schottky Barrier by Vertical Strain, Appl. Phys. Lett., Vol. 113, No. 17, 2018, pp. 171605–171609, https://doi.org/10.1063/1.5055616.