Giap Thi Thuy Trang, Pham Huu Kien

Main Article Content

Abstract

In this work, we use molecular dynamic (MD) simulation to study of the structure transition and crystallization of amorphous silica (SiO2) under compression. The structural evolution of amorphous SiO2 is explained through radial distribution function, coordination number distribution, bond angle distribution and visualization. Simulation result shown that there is a structural transformation from tetrahedral to octahedral network through SiO5 units. In the 5-15 GPa pressure range, structural transformation occurs powerfully and there are three structural phases corresponding to SiO4-, SiO5-, and SiO6- ones. At 15 GPa, octahedral-network (SiO6) is dominant. It is the first time we showed that when pressure is higher than 20 GPa, octahedral-network of amorphous SiO2 has a tendency to transform to stishovite crystalline phase.

Keywords: compression, crystallization, structural transformation, phase, amorphous

References

[1] A.R. Oganov, M.J. Gillan, G.D. Price, Structural stability of silica at high pressures and temperatures, Physical Review B 71 (2010) 064104.
[2] V.P. Prakapenka, Guoyin Shen, L.S. Dubrovinsky, M.L. Rivers, S.R. Sutton, High pressure induced phase transformation of SiO2 and GeO2 : difference and similarity, Journal of Physics and Chemistry of Solids 65 (2004) 1537-1545.
[3] K.J. Kingma, R.E. Cohen, R.J. Hemley, H.K. Mao, Transformation of stishovite to a denser phase at lower-mantle pressures, Nature 374 (1995) 243-245.
[4] S.R. Shieh, T.S. Duffy, B. Li, Strength and Elasticity of SiO2 across the Stishovite–CaCl2-type Structural Phase Boundary, Physical Review Letters 89 (2002) 255507.
[5] S. Ono, K. Hirose, M. Murakami, M. Isshiki, Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations, Earth and Planetary Science Letters 197 (2002) 187-192.
[6] D.M. Teter, R.J. Hemley, G. Kresse, J. Hafner, High pressure polymorphism in silica, Physical Review Letters 80 (1998) 2145-2148.
[7] L.S. Dubrovinsky, N.A. Dubrovinskaya, S.K. Saxena, F. Tutti, S. Rekhi, T.L. Bihan, G. Shen, J. Hu, Pressure-induced transformations of cristobalite, Chemical Physics Letters 333 (2001) 264-270.
[8] D. Andrault, G. Fiquet, F. Guyot, M. Hanfland, Pressure-induced Landau-type transition in stishovite, Science 282 (1998) 720-724.
[9] D. Andrault, R.J. Angel, J.L. Mosenfelder, T.L. Bihan, Equation of state of stishovite to lower mantle pressures, American Mineralogist 88 (2003) 301-307.
[10] L.T. San, N.V. Hong, P.K. Hung, Polyamorphism of liquid silica under compression based on five order-parameters and two-state model: a completed and unified description, High Pressure Research 36 (2016) 187-197.
[11] F. Mauri et al., Si-O-Si bond-angle distribution in vitreous silica from first-principles 29Si NMR analysis, Physical Review B 62 (2000) R4786.
[12] Wei Liu et al., Multiple pathways in pressure-induced phase transition of coesite, Proceedings of the National Academy of Sciences 114 (2017) 12894-12899.
[13] E. Bykova et al., Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts, Nature communications 9 (2018) 4789.
[14] S. Petitgirard et al., Magma properties at deep Earth’s conditions from electronic structure of silica, Geochem. Perspect. Lett 9 (2019) 32-37
[15] Min Wu, Yunfeng Liang, Jian-Zhong Jiang and John S. Tse, Structure and properties of dense silica glass, Scientific reports 2 (2012) 398.
[16] Q.Y. Hu, J.F. Shu, A. Cadien, Y. Meng, W.G. Yang, H.W. Sheng, H.K. Mao, Polymorphic phase transition mechanism of compressed coesite, Nature Communications 6 (2015) 6630.
[17] James Badro et al., Theoretical study of a five-coordinated silica polymorph, Phys. Rev. B 56 (1997) R5797.
[18] B.W.H. van Beest, G.J. Kramer, R.A. van Santeen, Force fields for silicas and aluminophosphates based on ab initio calculations, Physical Review Letters 64 (1990) 1955.
[19] P.K. Hung, N.V. Hong, L.T. Vinh, Diffusion and structure in silica liquid: a molecular dynamics simulation, Journal of Physics: Condensed Matter 19 (2007) 466103.
[20] Neng Li et al., Densification of a continuous random network model of amorphous SiO2 glass, Physical Chemistry Chemical Physics 16 (2014) 1500-1514.
[21] K. Vollmayr, W. Kob, and K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study, Physical Review B 54 (1996) 15808.
[22] R.L.C. Vink and G.T. Barkema, Large well-relaxed models of vitreous silica, coordination numbers, and entropy, Physical Review B 67 (2002) 245201.
[23] T.F. Soules, G.H. Gilmer, M. J. Matthews, J.S. Stolken, M.D. Feit, Silica molecular dynamic force fields—A practical assessment. Journal of non-crystalline solids 357 (2011) 1564-1573.
[24] R.G.D. Valle and H.C. Andersen, Molecular dynamics simulation of silica liquid and glass, The Journal of chemical physics 97 (1992) 2682-2689.
[25] D. Herzbach, K. Binder, M.H. Müser, Comparison of model potentials for molecular-dynamics simulations of silica, The Journal of chemical physics 123 (2005) 124711.
[26] J. Horbach, W. Kob, Static and dynamic properties of a viscous silica melt, Physical Review B 60 (1999) 3169-3181.
[27] P.K. Hung, N.T.T. Ha, M.T.Lan, N.V. Hong, Spatial heterogeneous distribution of SiOx → SiOx±1 reactions in silica liquid, The Journal of chemical physics 138 (2013) 244505.
[28] J.S. Tse, D.D. Klug, Mechanical instability of α-quartz: A molecular dynamics study, Physical review letters 67 (1991) 3559.
[29] H. Kimizuka, H. Kaburaki, Y. Kogure, Molecular-dynamics study of the high-temperature elasticity of quartz above the α-β phase transition, Physical Review B 67 (2003) 024105.
[30] M. Muser, K. Binder, Molecular dynamics study of the α–β transition in quartz: elastic properties, finite size effects, and hysteresis in the local structure, Physics and Chemistry of Minerals 28 (2001) 746-755.
[31] I. Saika-Voivod, F. Sciortino, P.H. Poole, Computer simulations of liquid silica: Equation of state and liquid–liquid phase transition, Physical Review E 63 (2000) 011202.
[32] Ivan Saika-Voivod, Francesco Sciortino, Tor Grande, Peter H. Poole, Phase diagram of silica from computer simulation. Physical Review E 70 (2004) 061507.
[33] N. Li, R. Sakidja, S. Aryal, W. Ching, Densification of a continuous random network model of amorphous SiO2 glass, Physical Chemistry Chemical Physics 16 (2014) 1500-1514.