Tran Thi Ha, Nguyen Thi Huyen Trang, Bach Thanh Cong, Nguyen Thi Dieu Thu, Nguyen Thanh Binh, Nguyen Viet Tuyen, Pham Nguyen Hai

Main Article Content


We report a facile process to fabricate cuprous thin films by thermal oxidation of copper substrates. Structure and phase identification were studied by X-ray diffraction measurement and Raman spectroscopy. Scanning electron microscopy was utilized to study surface morphology of the as-fabricated thin films and optical properties of the samples were investigated by diffused reflectance spectroscopy. The study shows that cuprous thin films could be obtained by controlling annealing temperature in the region of 200-300 oC.

Keywords: Copper oxide, thin films, thermal oxidation, Raman


Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F. Soldera, D. Horwat, F. Mücklich, J.F. Pierson, Electronic structures of Cu2O, Cu4O3, and CuO: A joint experimental and theoretical study, Phys. Rev. B. 94 (2016) 1–10.
[2] K. Mikami, Y. Kido, Y. Akaishi, A. Quitain, T. Kida, Synthesis of Cu2O/CuO nanocrystals and their application to H2S sensing, Sensors (Switzerland). 19 (2019) 1–14.
[3] M. Hara, Cu2O as a photocatalyst for overall water splitting under visible light irradiation, Chem. Commun. 2 (1998) 357–358.
[4] N. Dasineh Khiavi, R. Katal, S. Kholghi Eshkalak, S. Masudy-Panah, S. Ramakrishna, H. Jiangyong, Visible Light Driven Heterojunction Photocatalyst of CuO–Cu2O Thin Films for Photocatalytic Degradation of Organic Pollutants, Nanomaterials. 9 (2019) 1011(1)-1011(12).
[5] H.M. Wei, H.B. Gong, L. Chen, M. Zi, B.Q. Cao, Photovoltaic Efficiency Enhancement of Cu2O Solar Cells Achieved by Controlling Homojunction Orientation and Surface Microstructure, J. Phys. Chem. C. 116 (2012) 10510–10515.
[6] Y. Ievskaya, R.L.Z. Hoye, A. Sadhanala, K.P. Musselman, J.L. MacManus-Driscoll, Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO, J. Vis. Exp. (2016) 1–7.
[7] N. Winkler, S. Edinger, J. Kaur, R.A. Wibowo, W. Kautek, T. Dimopoulos, Solution-processed all-oxide solar cell based on electrodeposited Cu2O and ZnMgO by spray pyrolysis, J. Mater. Sci. 53 (2018) 12231–12243.
[8] T.H. Tran, V.T. Nguyen, Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review, Int. Sch. Res. Not. 2014 (2014) 1–14.
[9] T.H. Tran, V.T. Nguyen, Phase transition of Cu2O to CuO nanocrystals by selective laser heating, Mater. Sci. Semicond. Process. 46 (2016) 6–9.
[10] T.T. Ha, N. Thi, H. Trang, N.M. Hong, N.V. Tuyen, Fabrication of thin cuprous oxide layer on copper substrate by thermal oxidation method, Proc. IWNA 2017, 08-11 Novemb. 2017, Phan Thiet, Vietnam. (2017) 391–393.
[11] I.S. Brandt, M.A. Tumelero, S. Pelegrini, G. Zangari, A.A. Pasa, Electrodeposition of Cu2O: growth, properties, and applications, J. Solid State Electrochem. 21 (2017) 1999–2020.
[12] D.S. Zimbovskii, B.R. Churagulov, Cu2O and CuO Films Produced by Chemical and Anodic Oxidation on the Surface of Copper Foil, Inorg. Mater. 54 (2018) 660–666.
[13] S. Dolai, S. Das, S. Hussain, R. Bhar, A.K. Pal, Cuprous oxide (Cu2O) thin films prepared by reactive d.c. sputtering technique, Vacuum. 141 (2017) 296–306.
[14] M.D. Susman, Y. Feldman, A. Vaskevich, I. Rubinstein, Chemical deposition of Cu2O nanocrystals with precise morphology control, ACS Nano. 8 (2014) 162–174.
[15] T.H. Tran, V.T. Nguyen, Phase transition of Cu2O to CuO nanocrystals by selective laser heating, Mater. Sci. Semicond. Process. 46 (2016) 6–9.
[16] T.T. Ha, B.T. Huyen, N.V. Tuyen, Preparation of Well-aligned CuO Nanorods by Thermal Oxidation Method, 32 (2016) 40–44.
[17] D.T.M. Huong, N.H. Nam, L. Van Vu, N.N. Long, Preparation and optical characterization of Eu3+ doped CaTiO3 perovskite powders, J. Alloys Compd. 537 (2012) 54–59.
[18] H. Solache-Carranco, G. Juarez-Diaz, M. Galvan-Arellano, J. Martinez-Juarez, G. Romero-Paredes R., R. Pena-Sierra, Raman scattering and photoluminescence studies on Cu2O, in: 2008 5th Int. Conf. Electr. Eng. Comput. Sci. Autom. Control. CCE 2008, 2008: pp. 421–424.
[19] T. Sander, C.T. Reindl, P.J. Klar, Breaking of Raman selection rules in Cu2O by intrinsic point defects, Mater. Res. Soc. Symp. Proc. 1633 (2014) 81–86.
[20] T. Sander, C.T. Reindl, M. Giar, B. Eifert, M. Heinemann, C. Heiliger, P.J. Klar, Correlation of intrinsic point defects and the Raman modes of cuprous oxide, Phys. Rev. B - Condens. Matter Mater. Phys. 90 (2014) 1–8.