Nguyen Thi Thanh Ha, Tran Thuy Duong, Nguyen Hoai Anh

Main Article Content

Abstract

Molecular dynamics simulation of sodium-silicate has been carried out to investigate the microstructural transformation and diffusion mechanism. The microstructure of sodium silicate is studied by the pair radial distribution function, distribution of SiOx (x=4,5,6), OSiy (y=2,3) basic unit, bond angle distribution. The simulation results show that the structure of sodium silicate occurs the transformation from a tetrahedral structure to an octahedral structure under pressure. The additional network-modifying cation oxide breaking up this network by the generation of non-bridging O atoms and it has a slight effect on the topology of SiOx and OSiy units. Moreover, the diffusion of network- former atom in sodium-silicate melt is anomaly and diffusion coefficient for sodium atom is much larger than for oxygen or silicon atom. The simulation proves two diffusion mechanisms of the network-former atoms and modifier atoms.

Keywords: Molecular dynamics, microstructural transformation, mechanism diffusion, sodium-silicate

References

[1] S. Sundararaman, W.-Y. Ching, L. Huang, Mechanical properties of silica glass predicted by a pair-wise potential inmolecular dynamics simulations, J. Non-Crystal. Solids 102 (2016) 102-109.
https://doi.org/10.1016/j.jnoncrysol.2016.05.012.
[2] P. Koziatek, J.L. Barrat, D. Rodney, Short- and medium-range orders in as-quenched and deformed SiO2 glasses: An atomistic study, J. Non-Crystal. Solids 414 (2015) 7-15 https://doi.org/10.1016/j.jnoncrysol.2015.01.009.
[3] A. Zeidler, K. Wezka, R.F. Rowlands, D.A.J. Whittaker, P.S. Salmon, A. Polidori, J.W.E. Drewitt, S. Klotz, H.E. Fischer, M.C. Wilding, C.L. Bull, M.G. Tucker, M. Wilson, High-pressure transformation of SiO2 glass from a tetrahedral to an octahedral network: A joint approach using neutron diffraction and molecular dynamics, Phys. Rev. Lett. 113 (2014) 135501. https://doi.org/ 10.1103/PhysRevLett.113.135501.
[4] Q. Williams, R. Jeanloz, Spectroscopic Evidencefor Pressure Induced Coordination Changes in Silicate Glassesand Melts, Science 239 (1988). https:// doi: 10.1126/science.239.4842.902.
[5] J.F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y.Q. Cai, N. Hiraoka, C.S. Yoo, A. Trave, P. Eng, M.Y. Hu, P. Chow, Electronic bonding transition in compressed SiO2glass, Phys. Rev. B 75 (2007) 012201.
https://doi.org/10.1103/PhysRevB.75.012201.
[6] C.J. Benmore, E. Soignard, S.A. Amin, M. Guthrie, S.D. Shastri, P.L. Lee, J.L. Yarger, Structural and topological changes in silica glass at pressure, Phys. Rev. B 81 (2010), 054105. https://doi.org/10.1103/PhysRevB.81.054105
[7] T. Sato, N. Funamori, Sixfold-Coordinated Amorphous Polymorph ofSiO2under High Pressure, Phys. Rev. Lett. 101 (2008): https://doi.org/10.1103/PhysRevLett.101.255502.
[8] P.W. Bridgman, I. Simon, Effects of Very High Pressures on Glass, J. Appl. Phys. 24 (1953).
https://doi.org/10.1063/1.1721294.
[9] J.S. Tse, D.D. Klug, Y. Le Page, High-pressure densification of amorphous silica, Phys. Rev. B, 46 (1992) 5933-5938: https://doi.org/10.1103/PhysRevB.46.5933.
[10] M. Wu, Y. Liang, J.Z. Jiang, S.T. John, Sci. Rep., 2 398 (2012).
[11] Q. Zhao, M. Guerette, G. Scannell, L. Huang, In-situhigh temperature Raman and Brillouin light scattering studies of sodiumsilicate glasses, J. Non-Crystal. Solids 358, (2012), 3418–3426.
https://doi.org/10.1016/j.jnoncrysol.2012.04.034.
[12] A.N.Cormack, Y. Cao, Molecular Dynamics Simulation of Silicate Glasses , Molecular Engineering 6 (1996) 183–227. https://doi.org/10.1007/BF00161727.
[13] H. Jabraoui, Y.Vaills, A. Hasnaoui, M. Badawi and S. Ouaskit, Effect of Sodium Oxide Modifier on Structural and Elastic Propertiesof Silicate Glass, J. Phys. Chem. B 281 120 (2016) 13193–13205.
https://doi.org/10.1021/acs.jpcb.6b09664.
[14] T.K. Bechgaard eltal., Structure and mechanical properties of compressed sodiumaluminosilicate glasses: Role of non-bridging oxygens, J. Non-Cryst. Solids 441 (2016) 49-57. https://doi.org/10.1016/j.jnoncrysol.2016.03.011.
[15] H. Mathieu, J. F. Anne, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 53 (2014).
[16] S. Cheng, Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy, Scientific Reports, 5:17526 (2015) https://doi.org 10.1038/srep17526.
[17] G.N. Greaves and S. Sen, Inorganic glasses, glass-forming liquids andamorphizing solids. Adv. Phys. 56 (2007) 1-166. http://dx.doi.org/10.1080/00018730601147426.
[18] A. Meyer, F. Kargk, J. Horbach, Journal of Netron New 23, 3, (2012).
[19] S.I. Sviridov, Diffusion of Cations in Sodium Potassium and Sodium Barium Silicate Melts, Glass Physics and Chemistry 39 (2013) 130–135 https://doi.org/10.1134/S1087659613020156.
[20] H.A. Schaeffer, Ceramic materials 64, (2012) 156.
[21] T. Voigtmann, J. Horbach slow dynamics in ion-conducting sodium silicate melts: Simulation and mode-coupling theory, Europhys. Lett. 74 3 (2006) 459 https://doi.org/10.1209/epl/i2006-10012-2.
[22] A. N. Cormack, J. Du, T. R. Zeitler, Alkali ion migration mechanisms in silicate glasses probed bymolecular dynamics simulations, Phys. Chem. Chem. Phys. 4 (2002) 3193-3197 https://doi.org/10.1039/B201721K.
[23] A.O. Davidenko, V.E. Sokolskii, A.S. Roik, I.A. Goncharov, Structural Study of Sodium Silicate Glasses and Melts, Inorganic Material. 50 (2014) 1375–1382https://doi.org/10.1134/S0020168514120048.
[24] M. Fabian, P. Jovari, E. Svab, Gy Meszaros, T. Proffen, E Veress, Network structure of 0.7SiO2–0.3Na2O glass from neutron and x-ray diffraction and RMC modelling, J. Phys.: Cond. Matt., 19 (2007) 335209. https://doi.org 10.1088/0953-8984/19/33/335209.
[25] M.Bauchy, Structural, vibrational, and elastic properties of a calcium aluminosilicate glass frommolecular dynamics simulations: The role of the potential, J Chem Phys. 141 (2014) 024507
https://doi.org/10.1063/1.4886421.