Structure of GeO2 Glass under Compression Using Molecular Dynamics Simulation
Main Article Content
Abstract
We have investigated the behavior of GeO2 at the temperature of 300 K and the pressure from 0 to 100GPa by using the molecular dynamics simulation (the model with 5499 atoms). The results show that the Ge-Ge, Ge-O bond distance increase but O-O bond distance decreases when increasing the pressure. We find that the peak splitting of Ge-Ge at high pressure corresponds with the Ge-O-Ge and O-Ge-O bond angles. We also find that O-Ge-O bond angle decreases, and Ge-O-Ge bond angle increases with pressure. The core-sharing-bond is major at ambient pressure, but fractions of edge and face-sharing-bonds increase with pressure.
Keywords:
GeO2, High pressure, Microstructure, Radial distribution functions (RDFs), Molecular Dynamics simulation, clusters.
References
[1] M. Micoulaut, L. Cormier, G.S. Henderson, The structure of amorphous, crystalline and liquid GeO2, J. Phys.: Condens. Matter 18 (2006) R753–R784. http://doi.org/10.1088/0953-8984/18/45/R01.
[2] Dong et.al, Revisiting local structural changes in GeO2 glass at high pressure. Journal of Physics: Condensed Matte (2017) 29 465401, https://doi.org/10.1088/1361-648X/aa8d50.
[3] Yoshio Konoa,Curtis Kenney-Bensona, Daijo Ikutaa, Yuki Shibazakib, Yanbin Wangc, and Guoyin Shena, Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6. PNAS (2016-03-29) vol 113, no.13, 3436–3441 www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1524304113/-/DCSupplementa.
[4] Q. Mei, S. Sinogeikin, G. Shen, S. Amin, C. J. Benmore, and K. Ding, High-pressure x-ray diffraction measurements on vitreous GeO2 under hydrostatic conditions. Physical review. B 81, 174113 (2010), https://doi.org/10.1103/PhysRevB.81.174113.
[5] Tran Thuy Duong, Toshiaki Iitaka, Pham Khac Hung, Nguyen Van Hong, The first peak splitting of the Ge-Ge pair RDF in the correlation tonetwork structure of GeO2 under compression. Journal of Non-Crystalline Solids 459 (2017) 103–110, https://doi.org/10.1016/j.jnoncrysol.2017.01.003.
[6] Shanavas et.al, Classical molecular dynamics simulations behavior of GeO2 under high pressures and at high temperatures, Phys. Rev. B 73 (2006), 094120 https://doi.org/10.1103/PhysRevB.73.094120.
[7] Joaquín Peralta, Gonzalo Gutiérrez, Pressure-induced structural transition in amorphous GeO2: a molecular dynamics simulation. Eur. Phys. J. B 87, 257 (2014) , https://doi.org/10.1140/epjb/e2014-50176-3.
[8] C. Sevik, C. Bulutay, J. Mater. Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4, Sci. 42 (2007) 6555–6565, https://doi.org/10.1007/s10853-007-1526-9.
[9] Q.J. Liu, Z.T. Liu, L.P. Feng, H. Tian, First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and alpha-quartz GeO2 Solid State Sciences 12 (2010) 1748–1755, https://doi.org/10.1016/j.solidstatesciences.2010.07.025.
[10] Z. Lodziana, K. Parlinski, J. Hafner, Ab-initio studies of high-pressure phase-transitions in GeO2, Phys. Rev. B 63 (2001) 134106, https://doi.org/10.1103/PhysRevB.63.134106.
[11] M Vaccari, G Aquilanti, S Pascarelli and O Mathon, A new EXAFS investigation of local structural changes in amorphous and crystalline GeO2 at high pressure. J. Phys.: Condens. Matter 21 (2009) 145403 (8pp), https://doi.org/10.1088/0953-8984/21/14/145403.
[12] Salmon et.al, Erratum: Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa. IOPscience. Journal of Physics: Condensed Matte 24 (2012) 439601 (1pp), https://doi.org/10.1088/0953-8984/18/45/R01.
[13] R.D. Oeffner, S.R. Elliott, Interatomic potential for germanium dioxide empirically fitted to an ab-initio energy surface, Phys. Rev. B 58 (22) (1998) 14791–14803, https://doi.org/10.1103/PhysRevB.58.14791.
[14] J. Peralta, G. Guti ́errez, and J. Rogan. Structural and vibrational properties of amorphous GeO2: a molecular dynamics study. J. Phys.: Condens. Matter, 20(14):145215, 2008, https://doi.org/10.1088/0953-8984/20/14/145215
[15] P.K. Hung, L.T. Vinh, N.T. Nhan, N.V. Hong, and T.V. Mung. Local structure of liquids Al2O3 and GeO2 under densification. J. Non-Cryst. Solids, 354:3093–3097, 2008. https://doi.org/10.1016/j.jnoncrysol.2008.01.010.
[16] T. Li, S. Huang, and J. Zhu. The structure and void analysis of pressure-induced amorphous GeO2: Molecular dynamics simulation.Chem. Phys. Lett., 471 (4–6): 253–257, 2009. http://doi.org/ 10.1016/j.cplett.2009.02.059.
[17] M. Hawlitzky, J. Horbach, S. Ispas, M. Krack, and K. Binder. Comparative classical and ab initio molecular dynamics study of molten and glassy germanium dioxide. J. Phys.: Condens. Matter, 20 (28):285106, 2008, https://doi.org/10.1088/0953-8984/20/28/285106.
[18] D. Marrocchelli, M. Salanne, P.A. Madden, C. Simon, and P. Turq.The construction of a reliable potential for GeO2 from first principles. Mol. Phys., 107(4–6):443–452, 2009, https://doi.org/10.1080/00268970902845347.
[2] Dong et.al, Revisiting local structural changes in GeO2 glass at high pressure. Journal of Physics: Condensed Matte (2017) 29 465401, https://doi.org/10.1088/1361-648X/aa8d50.
[3] Yoshio Konoa,Curtis Kenney-Bensona, Daijo Ikutaa, Yuki Shibazakib, Yanbin Wangc, and Guoyin Shena, Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6. PNAS (2016-03-29) vol 113, no.13, 3436–3441 www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1524304113/-/DCSupplementa.
[4] Q. Mei, S. Sinogeikin, G. Shen, S. Amin, C. J. Benmore, and K. Ding, High-pressure x-ray diffraction measurements on vitreous GeO2 under hydrostatic conditions. Physical review. B 81, 174113 (2010), https://doi.org/10.1103/PhysRevB.81.174113.
[5] Tran Thuy Duong, Toshiaki Iitaka, Pham Khac Hung, Nguyen Van Hong, The first peak splitting of the Ge-Ge pair RDF in the correlation tonetwork structure of GeO2 under compression. Journal of Non-Crystalline Solids 459 (2017) 103–110, https://doi.org/10.1016/j.jnoncrysol.2017.01.003.
[6] Shanavas et.al, Classical molecular dynamics simulations behavior of GeO2 under high pressures and at high temperatures, Phys. Rev. B 73 (2006), 094120 https://doi.org/10.1103/PhysRevB.73.094120.
[7] Joaquín Peralta, Gonzalo Gutiérrez, Pressure-induced structural transition in amorphous GeO2: a molecular dynamics simulation. Eur. Phys. J. B 87, 257 (2014) , https://doi.org/10.1140/epjb/e2014-50176-3.
[8] C. Sevik, C. Bulutay, J. Mater. Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4, Sci. 42 (2007) 6555–6565, https://doi.org/10.1007/s10853-007-1526-9.
[9] Q.J. Liu, Z.T. Liu, L.P. Feng, H. Tian, First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and alpha-quartz GeO2 Solid State Sciences 12 (2010) 1748–1755, https://doi.org/10.1016/j.solidstatesciences.2010.07.025.
[10] Z. Lodziana, K. Parlinski, J. Hafner, Ab-initio studies of high-pressure phase-transitions in GeO2, Phys. Rev. B 63 (2001) 134106, https://doi.org/10.1103/PhysRevB.63.134106.
[11] M Vaccari, G Aquilanti, S Pascarelli and O Mathon, A new EXAFS investigation of local structural changes in amorphous and crystalline GeO2 at high pressure. J. Phys.: Condens. Matter 21 (2009) 145403 (8pp), https://doi.org/10.1088/0953-8984/21/14/145403.
[12] Salmon et.al, Erratum: Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa. IOPscience. Journal of Physics: Condensed Matte 24 (2012) 439601 (1pp), https://doi.org/10.1088/0953-8984/18/45/R01.
[13] R.D. Oeffner, S.R. Elliott, Interatomic potential for germanium dioxide empirically fitted to an ab-initio energy surface, Phys. Rev. B 58 (22) (1998) 14791–14803, https://doi.org/10.1103/PhysRevB.58.14791.
[14] J. Peralta, G. Guti ́errez, and J. Rogan. Structural and vibrational properties of amorphous GeO2: a molecular dynamics study. J. Phys.: Condens. Matter, 20(14):145215, 2008, https://doi.org/10.1088/0953-8984/20/14/145215
[15] P.K. Hung, L.T. Vinh, N.T. Nhan, N.V. Hong, and T.V. Mung. Local structure of liquids Al2O3 and GeO2 under densification. J. Non-Cryst. Solids, 354:3093–3097, 2008. https://doi.org/10.1016/j.jnoncrysol.2008.01.010.
[16] T. Li, S. Huang, and J. Zhu. The structure and void analysis of pressure-induced amorphous GeO2: Molecular dynamics simulation.Chem. Phys. Lett., 471 (4–6): 253–257, 2009. http://doi.org/ 10.1016/j.cplett.2009.02.059.
[17] M. Hawlitzky, J. Horbach, S. Ispas, M. Krack, and K. Binder. Comparative classical and ab initio molecular dynamics study of molten and glassy germanium dioxide. J. Phys.: Condens. Matter, 20 (28):285106, 2008, https://doi.org/10.1088/0953-8984/20/28/285106.
[18] D. Marrocchelli, M. Salanne, P.A. Madden, C. Simon, and P. Turq.The construction of a reliable potential for GeO2 from first principles. Mol. Phys., 107(4–6):443–452, 2009, https://doi.org/10.1080/00268970902845347.