Nguyen Xuan Ca, Nguyen Thi Hien

Main Article Content

Abstract

The CdSe, type-II CdSe/CdTe core/shell and type-II/type-I CdSe/CdTe/ZnS core/shell/shell  quantum dots (QDs) were successfully synthesized in a noncoordinating solvent. The phonon characterizations, optical properties and structures of the synthesized QDs were characterized by Raman scattering (RS) spectra, photoluminescence (PL) spectroscopy, PL-decay lifetime, absorption spectroscopy (Abs), and X-ray diffraction (XRD). The growth of QDs was monitored by using RS, which demonstrated the formation of correct of the core/shell and core/shell/shell structures. Observation results from XRD reveal that all QDs crystallize in the cubic phase with zinc-blende structure. The typical characteristics of spatially indirect recombination for type-II QDs were observed through Abs and PL spectroscopy. The ZnS shell significantly enhanced the PL quantum yeild (QY), the optical durability, the chemical stability and separating CdSe/CdTe QDs from the surroundings. The effect of excitation power on the PL properties of the CdSe core,  CdSe/CdTe and CdSe/CdTe/ZnS QDs has been investigated.

Keywords: Quantum dot, type-II/type-I, optical properties, photoluminescence.

References

[1] A. Nemchinov, M. Kirsanova, N.H. Kasakarage, M. Zamkov, Synthesis and Characterization of Type II ZnSe/CdS Core/Shell Nanocrystals, J. Phys. Chem. C. 112 (2008) 9301–9307.
https://doi.org/10.1021/jp801523m.
[2] W. Zhang, G. Chen, J. Wang, B.C. Ye, X. Zhong, Design and Synthesis of Highly Luminescent Near-Infrared-Emitting Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Quantum Dots, Inorg. Chem. 48 (2009) 9723–9731. https://doi.org/10.1021/ic9010949.
[3] H.T. Van, N.X. Ca, N.T. Hien, P.M. Tan, T.L. Phan, L.D. Thanh, P.V. Do, N.Q. Bau, V.T.K. Lien, Tunable dual emission in type-I/type-II CdSe/CdS/ZnSe nanocrystals, J. Alloy. Compd. 791 (2019) 144-151. https://doi.org/10.1016/j.jallcom.2019.03.333.
[4] C. Zhang, S. Liu, X. Liu, F. Deng, Y. Xiong, F.C. Tsai, Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells, R. Soc. Open. Sci. 5 (2018) 171712. https://doi.org/10.1098/rsos.171712.
[5] N.H. Kasakarage, P.Z. Khoury, A.N. Tarnovsky, M. Kirsanova, I. Nemitz, A. Nemchinov, M. Zamkov, Ultrafast Carrier Dynamics in Type II ZnSe/CdS/ZnSe Nanobarbells, ACS Nano. 4 (2010) 1837–1844. https://doi.org/10.1021/nn100229x.
[6] N.X. Ca, V.T.K. Lien, P.M. Tan, N.T. Hien, V.X. Hoa, T.T.K. Chi, N.X. Truong, V.T.K. Oanh, N.T.M. Thuy, Tunable photoluminescent Cu-doped CdS/ZnSe type-II core/shell quantum dots, J. Lumin. 215 (2019) 116627. https://doi.org/10.1016/j.jlumin.2019.116627.
[7] H.Q. Huang, J.L. Liu, B.F. Han, C.C. Mi, S.K. Xu, Cell labeling and cytotoxicity of aqueously synthesized CdTe/CdS/ZnS core–shell–shell quantum dots by a water bath-hydrothermal method, J. Lumin. 132 (2012) 1003. https://doi.org/10.1016/j.jlumin.2011.11.010.
[8] J. Bang, J. Park, J.H. Lee, N. Won, J. Nam, J. Lim, B.Y. Chang, H.J. Lee, B. Chon, J. Shin, J.B. Park, J.H. Choi, K. Cho, S.M. Park, T. Joo, S. Kim, ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties, Chem. Mater. 22 (2010) 233–240. https://doi.org/10.1021/cm9027995.
[9] C.H. Wang, T.T. Chen, K.W. Tan, Y.F. Chen, Photoluminescence properties of CdTe/CdSe core-shell type-II quantum dots, J. Appl. Phys. 99 (2006) 123521. https://doi.org/10.1063/1.2207721.
[10] S. Kim, B. Fisher, H.J. Eisler, M.G. Bawendi, Type-II Quantum Dots:  CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures, J. Am. Chem. Soc. 125 (2003) 11466.
https://doi.org/10.1021/ja0361749.
[11] G.R. Bhand, N.B. Chaure, Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method, Mater. Sci. Semicond. Process. 68 (2017) 279-287. https://doi.org/10.1016/j.mssp.2017.06.033.
[12] N.H. Kasakarage, N.P. Gurusinghe, M. Zamkov, Blue-Shifted Emission in CdTe/ZnSe Heterostructured Nanocrystals, J. Phys. Chem. C. 113 (2009) 4362-4368. https://doi.org/10.1021/jp8106843.
[13] S.M. Fairclough, E.J. Tyrrell, D.M. Graham, P.J.B. Lunt, S.J.O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A.A.R. Watt, J.M. Smith, Growth and Characterization of Strained and Alloyed Type-II ZnTe/ZnSe Core–Shell Nanocrystals, J. Phys. Chem. C. 116 (2012) 26898-26907. https://doi.org/10.1021/jp3087804.
[14] Z. Jiang, D.F. Kelley, S. Krastanov, Stranski–Krastanov Shell Growth in ZnTe/CdSe Core/Shell Nanocrystals, J. Phys. Chem. C. 117 (2013) 6826-6834. https://doi.org/10.1021/jp4002753.
[15] N.X. Ca, N.T. Hien, N.T. Luyen, V.T.K. Lien, L.D. Thanh, P.V. Do, N.Q. Bau, T.T. Pham, Photoluminescence properties of CdTe/CdTeSe/CdSe core/alloyed/shell type-II quantum dots, J. Alloy. Compd. 787 (2019) 823-830. https://doi.org/10.1016/j.jallcom.2019.02.139.
[16] N.X. Ca, H.T. Van, P.V. Do, L.D. Thanh, P.M. Tan, N.X. Truong, V.T.K. Oanh, N.T. Binh, N.T. Hien, Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots, RSC Adv. 10 (2020) 25618. https://doi.org/10.1039/D0RA04257A.
[17] P.T. Tho, N.D. Vinh, H.T. Van, P.M. Tan, V.X. Hoa, N.T. Kien, N.T. Hien, N.T.K. Van, N.X. Ca, Effects of chemical affinity and injection speed of Se and Te precursors on the development kinetic and optical properties of ternary alloyed CdTe1-xSex nanocrystals, J. Phys. Chem. Solid. 139 (2020) 109332. https://doi.org/10.1016/j.jpcs.2020.109332.
[18] W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater. 15 (2003) 2854-2860. https://doi.org/10.1021/cm034081k.
[19] H.T. Van, N.D. Vinh, P.M. Tan, U.T.D. Thuy, N.X. Ca, N.T. Hien, Synthesis and optical properties of tunable dual emission copper doped CdTe1-xSex alloy nanocrystals, Optic. Mater. 97 (2019) 109392. https://doi.org/10.1016/j.optmat.2019.109392.
[20] B. Blackman, D.M. Battaglia, T.D. Mishima, M.B. Johnson, X. Peng, Control of the Morphology of Complex Semiconductor Nanocrystals with a Type II Heterojunction, Dots vs Peanuts, by Thermal Cycling, Chem. Mater. 19 (2007) 3815–3821. https://doi.org/10.1021/cm0704682.
[21] P.T.K. Chin, C.M. Donega, S.S.V. Bavel, S.C.J. Meskers, N.A.J.M. Sommerdijk, R.A.J. Janssen, Highly Luminescent CdTe/CdSe Colloidal Heteronanocrystals with Temperature-Dependent Emission Color, J. Am. Chem. Soc. 129 (2007) 14880-14886. https://doi.org/10.1021/ja0738071.
[22] J.Z. Niu, H. Shen, C. Zhou, W. Xu, X. Li, H. Wang, S. Lou, Z. Du, L.S. Li, Controlled synthesis of high quality type-II/type-I CdS/ZnSe/ZnS core/shell1/shell2 nanocrystals, Dalton Trans. 39 (2010) 3308–3314. https://doi.org/10.1039/B922130A.
[23] V.I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire, A. Piryatinski, Single-exciton optical gain in semiconductor nanocrystals, Nat. Commun. 24 (2007) 441-447. https://doi.org/10.1038/nature05839
[24] F. Luckert, M.V. Yakushev, C. Faugeras, A.V. Karotki, A.V. Mudryi, R.W. Martin, Excitation power and temperature dependence of excitons in CuInSe2, J. Appl. Phys. 111 (2012) 093507.
https://doi.org/10.1063/1.4709448.
[25] J. Weber, W. Schmid, R. Sauer, Localized exciton bound to an isoelectronic trap in silicon, Phys. Rev. B. 2 (1980) 2401. https://doi.org/10.1103/PhysRevB.21.2401.
[26] P.D. Hodgson, R.J. Young, M.A. Kamarudin, P.J. Carrington, A. Krier, Q.D. Zhuang, E.P. Smakman, P.M. Koenraad, M. Hayne, Blueshifts of the emission energy in type-II quantum dot and quantum ring nanostructures, J. Appl. Phys. 114 (2013) 073519. https://doi.org/10.1063/1.4818834.
[27] K. Suzuki, R.A. Hogg, Y. Arakawa, Structural and optical properties of type II GaSb/GaAs self-assembled quantum dots grown by molecular beam epitaxy, J. Appl. Phys. 85 (1999) 8349.
https://doi.org/10.1063/1.370622.
[28] H.T. Van, N.D. Vinh, N.X. Ca, N.T. Hien, N.T. Luyen, P.V. Do, N.V. Khien, Effects of ligand and chemical affinity of S and Se precursors on the shape, structure and optical properties of ternary CdS1-xSex alloy nanocrystals, Mater. Lett. 264 (2020) 127387. https://doi.org/10.1016/j.matlet.2020.127387.