Phung Thi Viet Bac, Pham Trong Lam, Dinh Van An

Main Article Content

Abstract

The adsorption mechanism of 2-butanone (ethyl methyl ketone) on the surface of graphene is investigated by using Density Functionals Theory (DFT). A 2-butanone molecule is chosen as a selected example of main volatile organic compounds (VOCs) in exhaled breath. To describe the absorption of 2-butanone and graphene substrate, we have performed DFT simulations including van de Waals (vdW) interactions implemented in the Vienna Ab-initio Simulation Package (VASP). The global minimum energy configurations and binding energies for a 2-butanone molecule adsorbed on graphene are determined by using Computational DFT-based Nanoscope tool for imaging the binding possibility of the adsorbed molecules on the graphene surface. The adsorption energy profiles are calculated by three functionals of van der Waals interactions: revPBE-vdW, optPBE-vdW, and vdW-DF2. It is shown that the adsorption energy is highly sensitive to the vdW functionals. The fundamental insights of the interactions between 2-butanone and graphene through molecular doping, i.e., charge transfer are discussed in detail.

Keywords: VOCs adsorption, 2-butanone, graphene, ab-initio calculations, charge transfer.

References

[1] Z. Jia, A. Patra, V.K. Kutty, T. Venkatesan, Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer, Metabolites. 9 (2019) 1–17. https://doi.org/10.3390/metabo9030052.
[2] M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Volatile organic compounds of lung cancer and possible biochemical pathways, Chem. Rev. 112 (2012) 5949–5966. https://doi.org/10.1021/cr300174a.
[3] H. Amal, D. Shi, R. Ionescu, W. Zhang, Q. Hua, Y. Pan, L. Tao, H. Liu, Assessment of ovarian cancer conditions from exhaled breath, 136 (2015) E614–E622. https://doi.org/10.1002/ijc.29166.
[4] Y.C. Weng, Y.H. Yang, I.T. Lu, Detection of 2-butanone for the diagnosis of Helicobacter pylori using graphene and ZnO nanorod electrodes, J. Nanosci. Nanotechnol. 16 (2016) 7077–7084.
https://doi.org/10.1166/jnn.2016.10685.
[5] Computational DFT-based Nanoscope tool developed by V. A. Dinh, VNU Vietnam Japan University, 2017.
[6] M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92 (2004) 22–25. https://doi.org/10.1103/PhysRevLett.92.246401.
[7] G. Román-Pérez, J.M. Soler, Efficient implementation of a van der waals density functional: Application to double-wall carbon nanotubes, Phys. Rev. Lett. 103 (2009) 1–4. https://doi.org/10.1103/PhysRevLett.103.096102.
[8] J. Klimeš, D.R. Bowler, A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys. Condens. Matter. 22 (2010) 22201–22205. https://doi.org/10.1088/0953-8984/22/2/022201.
[9] K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B - Condens. Matter Mater. Phys. 82 (2010) 3–6. https://doi.org/10.1103/PhysRevB.82.081101.
[10] J. Klime, D.R. Bowler, A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B. 83 (2011) 195131(1–13). https://doi.org/10.1103/PhysRevB.83.195131.
[11] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138. https://doi.org/10.1046/j.1365-4362.2002.01376.x.
[12] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864–B871.
https://doi.org/10.1103/PhysRev.136.B864.
[13] David Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892–7895.
[14] G. Kresse, Ab initio molecular dynamics for liquid metals, J. Non. Cryst. Solids. 192–193 (1995) 222–229.
https://doi.org/10.1016/0022-3093(95)00355-X.
[15] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium, Phys. Rev. B. 49 (1994) 14251–14269. https://doi.org/10.1103/PhysRevB.49.14251.
[16] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.
[17] J.D. Pack, H.J. Monkhorst, Special points for Brillouin-zone integrations - a reply, Phys. Rev. B. 16 (1977) 1748–1749. https://doi.org/10.1103/PhysRevB.16.1748.
[18] G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 (2006) 354–360. https://doi.org/10.1016/j.commatsci.2005.04.010.
[19] G. Henkelman, B.P. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904. https://doi.org/10.1063/1.1329672.
[20] O. Leenaerts, B. Partoens, F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study, Phys. Rev. B. 77 (2008) 1254161–1254166. https://doi.org/10.1103/PhysRevB.77.125416.