Nguyen Trong Nghia

Main Article Content

Abstract

C2H5OH has been using as an alternative fuel for decades; HO2 also plays a pivotal role in the combustion. The kinetics and mechanism for the reaction between C2H5OH and HO2 radical have been investigated using the molecular parameters for the reactants, transition states and products predicted at the CCSD(T)//B3LYP/6-311++G(3df,2p) level of theory. There are ten pair products have been found including C2H5O + H2O2 (PR1), CH3CHOH + H2O2 (PR2), CH2CH2OH + H2O2 (PR3), CH3CH2OOOH + H (PR4), C2H5 + HOOOH (PR5), CH3CH2OOH + OH (PR6), CH3CH(OH)OOH + H (PR7), HOCH2CH2OH + H (PR8), HOOCH3 + CH2OH (PR9), and CH3 + HOOCH2OH (PR10) in which the second and third ones are the major channels. The rate constants and branching ratios for all H-abstraction reactions have been calculated using the conventional transition state theory with asymmetric Eckart tunneling corrections for the temperature ranging from 298 to 2000 K.

Keywords: DFT, C2H5OH, HO2, potential energy surface, kinetics

References

[1] A.C. Lloyd, Evaluated and Estimated Kinetic Data for Phase Reactions of the Hydroperoxyl Radical, Int. J. Chem. Kinet. 6 (1974) 169-228. https://doi.org/10.1002/kin.550060202.
[2] C.W. Zhou, J.M. Simmie, H.J. Curran, Rate Constants for Hydrogen Abstraction by HO2 from n-Butanol, Int. J. Chem. Kinet. 44 (2012) 155-164. https://doi.org/10.1002/kin.20708.
[3] S.J. Klippenstein, L.B. Harding, M.J. Davis, A.S. Tomlin, R.T. Skodje, Uncertainty driven theoretical kinetics studies for CH3OH ignition: HO2 + CH3OH and O2 + CH3OH, Proc. Combust. Inst. 33 (2011) 351–357. https://doi.org/10.1016/j.proci.2010.05.066.
[4] T.J. Held, F.L. Dryer, A comprehensive mechanism methanol oxidation, Int. J. Chem. Kinet. 30 (1998) 805–830. https://doi.org/10.1002/(SICI)1097-4601(1998)30:11<805::AID-KIN4>3.0.CO;2-Z.
[5] S.M. Sarathy, S. Vranckx, K. Yasunaga, M. Mehl, P. Osswald, W.K. Metcalfe, C.K. Westbrook, W.J. Pitz, H.K. Kohse, R.X. Fermandes, H.J. Curran, A comprehensive chemical kinetic combustion model for the four butanol isomers, Combust. Flame 159 (2012) 2028-2055. https://doi.org/10.1016/j.combustflame.2011.12.017.
[6] G. Black, J.M. Simmie, Barrier Heights for H-Atom Abstraction by HO2 from n-Butanol-A Simple Yet Exacting Test for Model Chemistries?, J. Comput. Chem. 31 (2010) 1236 – 1248. https://doi.org/10.1002/jcc.21410.
[7] W. Tsang, Chemical kinetic data base for combustion chemistry. Part 2. Methanol, J. Phys. Chem. Ref. Data 16 (1987) 471-508. https://doi.org/10.1063/1.555802.
[8] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D.W. Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
[9] J.R. Barker, N.F. Ortiz, J.M. Preses, L.L. Lohr, A. Maranzana, P.J. Stimac, T.L. Nguyen, T.J.D. Kumar, MultiWell Programe Suite User Manual v. 2014.1, University of Michigan, US, 2014.
[10] C. Eckart, The penetration of a potential barrier by electrons, Phys. Rev. 35 (1930) 1303-1309.
https://doi.org/10.1103/PhysRev.35.1303.
[11] H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 107 (1935) 3.
https://doi.org/10.1063/1.1749604.
[12] K.G. Lubic, T. Amano, H. Uehara, K. Kawaguchi, E. Hirota, The 1 band of the DO2 radical by difference frequency laser and diode laser spectroscopy: The equilibrium sturcture of the hydroperoxyl radical, J. Chem. Phys. 81 (1984) 4826. https://doi.org/10.1063/1.447508.
[13] S. Coussan, Y. Bouteiller, J.P. Perchard, W.Q. Zheng, Rotational Isomerism of Ethanol and Matrix Isolation Infrared Spectroscopy, J. Phys. Chem. A, 102 (1998) 5789-5793. https://doi.org/10.1021/jp9805961.