Pham Trong Lam, Ta Thi Luong, Vo Van On, Dinh Van An

Main Article Content

Abstract

In this work, we investigated the adsorption mechanism of acetone and toluene on the surface of silicene by the quantum simulation method. The images of the potential energy surfaces for different positions of the adsorbate on the silicene surface were explored by Computational DFT-based Nanoscope tool for determination of the most stable configurations and diffusion possibilities. The charge transfer in order of 0.2 – 0.3 electrons and the tunneling gap opening of 18 – 23 meV due to acetone and toluene, respectively, suggest that silicene is considerably sensitive with these VOCs and can be used as the material in the fabrication of reusable VOC sensors.

Keywords: Volatile Organic Compound, Adsorption, Silicene, DFT, Cancer Detection.

References

[1] M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M, Phillips, A. Amann, H. Haick, Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways, Chem. Rev., 112 (2012) 5949–5966.
https://doi.org/10.1021/cr300174a
[2] E.M. Gaspar, A.F. Lucena, J.D. da Costa, H.C.das Neves, Organic metabolites in exhaled human breath—A multivariate approach for identification of biomarkers in lung disorders, J. Chromatogr. A, 1216 (2009) 2749–2756. https://doi.org/10.1016/j.chroma.2008.10.125
[3] S. Chowdhury, D. Jana, A theoretical review on electronic, magnetic and optical properties of silicene, Rep. Prog. Phys., 79 (2016) 126501. DOI: 10.1088/0034-4885/79/12/126501
[4] L.C. Lew Yan Voon, J. Zhu, U. Schwingenschlögl, Silicene: Recent theoretical advances, Appl. Phys. Rev., 3 (2016) 040802. https://doi.org/10.1063/1.4944631
[5] L. C. Lew Yan Voon, Electronic structure of silicene, Chinese Phys. B, 24 (2015) 087309. https://doi.org/10.1088/1674-1056/24/8/087309
[6] P. Vogt, G. Le Lay, and G. (Guy) Le Lay, "Silicene : prediction, synthesis, application", in: P. Vogt, G. Le Lay (eds), Silicene, NanoScience and Technology, Springer, Cham (2018), pp. 99-113. https://doi.org/10.1007/978-3-319-99964-7_5
[7] C. Grazianetti, A. Molle, Silicene in the Flatland, in: V. Morandi, L. Ottaviano (eds) GraphITA. Carbon Nanostructures. Springer, Cham (2017), pp. 137-152. https://doi.org/10.1007/978-3-319-58134-7_10
[8] R. Wang, M.S. Xu, X.D. Pi, Chemical modification of silicene, Chinese Phys. B, 24 (2015). 1–53. https://doi.org/10.1088/1674-1056/24/8/086807
[9] P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.L. Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett., 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501
[10] B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111), Nano Lett., 12 (2012) 3507–3511. https://doi.org/10.1021/nl301047g
[11] D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, and A. Molle, Local Electronic Properties of Corrugated Silicene Phases, Adv. Mater., 24 (2012) 5088–5093. https://doi.org/10.1002/adma.201202100
[12] B. Feng, H. Li, C.-C. Liu, T.-N. Shao, P. Cheng, Y. Yao, S. Meng, L. Chen, K. Wu, Observation of Dirac Cone Warping and Chirality Effects in Silicene, ACS Nano, 7 (2013) 9049–9054. https://doi.org/10.1021/nn403661h
[13] L. Chen, C.-C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon, Phys. Rev. Lett., 109 (2012) 056804. https://doi.org/10.1103/PhysRevLett.109.056804
[14] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu and J. Lu, Tunable bandgap in silicene and germanene, Nano Lett., 12 (2012) 113–118. https://doi.org/10.1021/nl203065e
[15] J. W. Feng, Y. J. Liu, H. X. Wang, J. X. Zhao, Q. H. Cai, and X. Z. Wang, Gas adsorption on silicene: A theoretical study, Comput. Mater. Sci., 87 (2014) 218–226. DOI: 10.1016/j.commatsci.2014.02.025
[16] N. Gao, G. Y. Lu, Z. Wen, Q. Jiang, Electronic structure of silicene: effects of the organic molecular adsorption and substrate, J. Mater. Chem. C, 5 (2017) 627–633. https://doi.org/10.1039/C6TC04943E
[17] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol., 10 (2015) 227–231. DOI: 10.1038/nnano.2014.325.
[18] J. Prasongkit, R.G. Amorim, S. Chakraborty, R. Ahuja, R.H. Scheicher, V. Amornkitbamrung, Highly Sensitive and Selective Gas Detection Based on Silicene, J. Phys. Chem. C, 119 (2015) 16934–16940, 2015. https://doi.org/10.1021/acs.jpcc.5b03635
[19] T.P. Kaloni, G. Schreckenbach, M.S. Freund, Large enhancement and tunable band gap in silicene by small organic molecule adsorption, J. Phys. Chem. C, 118 (2014) 23361–23367. https://doi.org/10.1021/jp505814v
[20] V. Nagarajan, R. Chandiramouli, First-Principles Investigation on Interaction of NH3 Gas on a Silicene Nanosheet Molecular Device, IEEE Trans. Nanotechnol., 16 (2017) 445–452. DOI:10.1109/TNANO.2017.2682125
[21] R. Chandiramouli, A. Srivastava, V. Nagarajan, NO adsorption studies on silicene nanosheet: DFT investigation, Appl. Surf. Sci., 351 (2015) 662–672. https://doi.org/10.1016/j.apsusc.2015.05.166
[22] G.K. Walia, D.K.K. Randhawa, Gas-sensing properties of armchair silicene nanoribbons towards carbon-based gases with single-molecule resolution, Struct. Chem., 29 ( 2018) 1893. https://doi.org/10.1007/s11224-018-1170-9
[23] J. Klimeš, D.R. Bowler, A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys. Condens. Matter, 22 (2010) 0–5. DOI:10.1088/0953-8984/22/2/022201
[24] J. Klimeš, D.R. Bowler, A. Michaelides, Van der Waals, Density functionals applied to solids, Phys. Rev. B, 83 (2011) 195131. https://doi.org/10.1103/PhysRevB.83.195131
[25] Computational DFT-based Nanoscope tool developed by V. A. Dinh, VNU Vietnam Japan University, 2017.
[26] Henkelman Group, Bader Charge Analysis, 2011. [Online]. [Accessed: 07-Dec-2018]. Available: http://theory.cm.utexas.edu/henkelman/code/bader/.
[27] S. Cahangirov, M. Topsakal, E. Aktürk, H. Šahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett., 102 (2009) 1–4.
[28] N.D. Drummond, V. Zólyomi, V.I. Fal’Ko, Electrically tunable band gap in silicene, Phys. Rev. B, 85 (2012) 1–7.
[29] L. Pan, H.J. Liu, Y.W. Wen, X.J. Tan, H.Y. Lv, J. Shi, X.F. Tang, First-principles study of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds, Phys. Lett. A, 375 (2011) 614–619.
[30] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Lett., 97 (2010) 223109.
[31] A. Krilaviciute, J.A. Heiss, M. Leja, J. Kupcinskas, H. Haick, H. Brenner, Detection of cancer through exhaled breath: a systematic review, Oncotarget, 6 (2015) 38643–38657.
[32] S. Cahangirov, H. Sahin, G.L. Lay, A. Rubio, Introduction to the Physics of Silicene and other 2D Materials, Springer Nature, 2018. DOI: 10.1007/978-3-319-46572-2