Ta Thi Luong, Pham Trong Lam, Dinh Van An

Main Article Content


Borophene, a new member of the 2D material family, was proven theoretically and empirically in many recent studies that it has a unique structure and promising properties applied in batteries and electronic devices. In this work, the adsorbability of β12 – borophene towards some main poisonous gases was investigated. Herein, first-principle calculations were employed to obtain the adsorption configurations, adsorption energy of CO, NO, CO2, NH3, and NO2 on b12 – borophene by using three van der Waals correlation functionals: revPBE-vdW, optPBE-vdW, and vdW-DF2. Also, the most stable configurations and diffusion possibilities of the gas molecules on the surface of b12 – borophene were determined visually by using Computational DFT-based Nanoscope. The nature of bonding and interaction between gas molecules and b12 – borophene were disclosed by using the density of states analysis and Bader charge analysis. Remarkably, borophene exhibits as a highly selective adsorbent when having great interactions with NOx gases outweigh the others.

Keywords: 12 – borophene, DFT, adsorption, toxic gases, 2D material


[1] Air pollution, https://www.who.int/airpollution/en/, WHO, 2017 (Accessed: 07-Dec-2018).
[2] B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T.-C. Chiang, S. Meng, I. Matsuda, Dirac Fermions in Borophene, Phys. Rev. Lett. 118 (2017) 1–6. https://doi.org/10.1103/PhysRevLett.118.096401.
[3] A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myer, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M. J. Yacaman, A. Ponce, A, R. Oganov, M. C. Hersam, N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science, 350 (2015) 1513–1516. https://doi.org/10.1126/science.aad1080.
[4] B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem., 8 (2016) 563–568. https://doi.org/10.1038/nchem.2491.
[5] N. Gao, X. Wu, X. Jiang, Y. Bai, J. Zhao, Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding, FlatChem, 7 (2018) 48–54. https://doi.org/10.1016/j.flatc.2017.08.008.
[6] Y. Huang, S. N. Shirodkar, B. I. Yakobson, Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration, J. Am. Chem. Soc., 139 (2017) 17181–17185.
[7] A. Brotchie, Borophene: Served on a silver platter, Nat. Rev. Mater. 1 (2016) 1–2.
[8] H. Cui, X. Zhang, D. Chen, Borophene: a promising adsorbent material with strong ability and capacity for SO2 adsorption, Appl. Phys. A, 124 (2018) 636. https://doi.org/10.1007/s00339-018-2064-9
[9] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6 (1)(1996)15–50.
[10] Y. Zhang, W. Yang, Comment on ‘Generalized Gradient Approximation Made Simple,’ Phys. Rev. Lett., 80 (1998) 890–890. https://doi.org/10.1103/PhysRevLett.80.890.
[11] J. Klimeš, D. R. Bowler, A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys. Condens. Matter 22 (2010) 022201. https://doi.org/10.1088/0953-8984/22/2/022201.
[12] J. Klimeš, D. R. Bowler, A. Michaelides, van der Waals density functionals applied to solids, Phys. Rev. B, 83 (2011) 195131. https://doi.org/10.1103/PhysRevB.83.195131.
[13] Computational DFT-based Nanoscope Code, V. A. Dinh, VNU Vietnam-Japan University, 2018.
[14] P.T.V. Bac, P.T. Lam, D.V. An, Adsorption of 2-Butanone on Pristine Graphene: A First-Principles Study, VNU J. Sci. Math. - Phys., (36) (1) 2020. https://doi.org/10.25073/2588-1124/vnumap.4457.
[15] P.T.Lam, T.T. Luong, V.V. On, D.V. An, DFT Study on Adsorption of Acetone and Toluene on Silicene, VNU J. Sci. Math. – Phys 36(1) 2020. https://doi.org/10.25073/2588-1124/vnumap.4461.
[16] Henkelman group, Code: Bader Charge Analysis. 2017. https://theory.cm.utexas.edu/henkelman/code/bader/.
[17] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272-1276. https://doi.org/10.1107/S0021889811038970.
[18] G. P. Campbell, A. J. Mannix, J. D. Emery, T. L. Lee, N. P. Guisinger, M. Hersam, M. Bedzyk, Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs, Nano Lett., 18 (2018) 2816–2821. https://doi.org/10.1021/acs.nanolett.7b05178.
[19] B. Peng, H. Zhang, H. Shao, Z. Ning, Y. Xu, G. Ni, H. Lu, D. W. Zhang, H. Zhu, Stability and strength of atomically thin borophene from first principles calculations, Mater. Res. Lett., 5 (2017) 399–407. https://doi.org/10.1080/21663831.2017.1298539.
[20] B. Mortazavi, O. Rahaman, A. Dianat, T. Rabczuk, Mechanical responses of borophene sheets: A first-principles study, Phys. Chem. Chem. Phys. 18 (2016) 27405–27413. https://doi.org/10.1039/C6CP03828J.
[21] H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He, J. Zhong, Lattice thermal conductivity of borophene from first principle calculation, Sci. Rep. 7 (2017) 1–8. http://dx.doi.org/10.1038/srep45986.
[22] S. Zhao, J. Xue, W. Kang, Gas adsorption on MoS2 monolayer from first-principles calculations, Chem. Phys. Lett. 595–596 (2014) 35–42. https://doi.org/10.1016/j.cplett.2014.01.043.
[23] O. Leenaerts, B. Partoens, F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study, Phys. Rev. B, 77 (2008) 1–6. https://doi.org/10.1103/PhysRevB.77.125416.
[24] Y. Cai, Q. Ke, G. Zhang, Y.W. Zhang, Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene, J. Phys. Chem. C, 119 (2015) 3102–3110. https://doi.org/10.1021/jp510863p.
[25] T.P. Kaloni, G. Schreckenbach, M. S. Freund, Large enhancement and tunable band gap in silicene by small organic molecule adsorption, J. Phys. Chem. C 118 (40) (2014) 23361–23367.
[26] V.Q. Bui, T.T. Pham, D.A. Le, C.M. Thi, H.M. Le, A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: Stability and electronic properties, J. Phys. Condens. Matter 27 (2015) 305005. https://doi.org/10.1088/0953-8984/27/30/305005.