Nguyen Viet Tuyen, Tran Thi Ha, Pham Nguyen Hai, Tran Thi Uyen, Nguyen Ngoc Dinh, Nguyen Thi Ha Thu

Main Article Content

Abstract

The major energy sources that human are relying on are fossil fuel and it is exhausted day by day. Furthermore, exploition and usage of fossil fuel also bring in many negative impacts on environmental polution. Solid oxide fuel cell (SOFC) has been considerred as a potential solution for such environmental and energy problems. Seeking a facile, cost and time saving process to synthesize Ba doped LaMnO3 is very important for development of SOFC applications because it helps to reduce the cost of comercial SOFC. LaMnO3 doped with Ba is more cost effective than Sr doped LaMnO3 because less rare earth elements are used. At the same time, its conductivity is still good enough with an appropriate thermal expansion matched with those of other parts of SOFC based on ytrium stabilized zirconia (YSZ).


In this paper, Ba doped LaMnO3 nanoparticles (LBMO), a promissing material for making cathode of SOFC, were prepared by microwave combustion method. This material has many advantages.  Effect of the amount fuel in the combustion reaction on the products was studied by various methods such as: X-ray diffraction measurement, scanning electron microscopy, energy dispersive X-ray spectroscopy. The results showed that each doping rate requires an appropriate amount of fuel to obtain pure and crystalline product. The obtained LBMO nanoparticles are crystallined in hexagonal phase at doping ratio of 0.2 and orthohombic phase at doping ratio of equal or larger than 0.3.

Keywords: Perovskite, microwave combustion, Ba doped LaMnO3 nano particle.

References

[1] A. Tarancón, Strategies for lowering solid oxide fuel cells operating temperature, Energies. 2 (2009) 1130–1150. https://doi.org/10.3390/en20401130.
[2] A.M. Abdalla, S. Hossain, A.T. Azad, P.M.I. Petra, F. Begum, S.G. Eriksson, A.K. Azad, Nanomaterials for solid oxide fuel cells: A review, Renew. Sustain. Energy Rev. 82 (2018) 353–368. https://doi.org/10.1016/j.rser.2017.09.046.
[3] T.H. Tran, T.C. Bach, N.H. Pham, Q.H. Nguyen, C.D. Sai, H.N. Nguyen, V.T. Nguyen, T.T. Nguyen, K.H. Ho, Q.K. Doan, Phase transition of LaMnO3 nanoparticles prepared by microwave assisted combustion method, Mater. Sci. Semicond. Process. 89 (2019) 121–125. https://doi.org/10.1016/j.mssp.2018.09.002.
[4] T.H. Tran, T.T.A. Tang, N.H. Pham, T.C. Bach, C.D. Sai, Q.H. Nguyen, V.V. Le, H.N. Nguyen, Q.K. Doan, T.T. Nguyen, V.B. Le, K.H. Ho, V.T. Nguyen, A novel approach for fabricating LaMnO3 thin films using combined microwave combustion and pulsed electron deposition techniques, J. Chem. 2019 (2019) 1–8. https://doi.org/10.1155/2019/3568185.
[5] H. Xu, B. Chen, P. Tan, W. Cai, W. He, D. Farrusseng, M. Ni, Modeling of all porous solid oxide fuel cells, Appl. Energy. 219 (2018) 105–113. https://doi.org/10.1016/j.apenergy.2018.03.037.
[6] M. Riazat, M. Baniassadi, M. Mazrouie, M. Tafazoli, M. Moghimi Zand, The Effect of cathode Porosity on Solid Oxide Fuel Cell Performance, Energy Equip. Syst. 3 (2015) 25–32. https://doi.org/10.22059/ees.2015.13908.
[7] B. Zhu, B. Wang, Y. Wang, R. Raza, W. Tan, J.S. Kim, P.A. van Aken, P. Lund, Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell, Nano Energy. 37 (2017) 195–202. https://doi.org/10.1016/j.nanoen.2017.05.003.
[8] S. Daengsakul, C. Thomas, I. Thomas, C. Mongkolkachit, S. Siri, V. Amornkitbamrung, S. Maensiri, Magnetic and cytotoxicity properties of La1-xSrxMnO3(0 ≤ x≤ 0.5) nanoparticles prepared by a simple thermal hydro-decomposition, Nanoscale Res. Lett. 4 (2009) 839–845. https://doi.org/10.1007/s11671-009-9322-x.
[9] J. Rodríguez-Carvajal, M. Hennion, F. Moussa, L. Pinsard, A. Revcolevschi, The Jahn-Teller structural transition in stoichiometric LaMnO3, Phys. B Condens. Matter. 234–236 (1997) 848–850. https://doi.org/10.1016/S0921-4526(96)01122-2.
[10] N.H. Nam, D.T.M. Huong, N.H. Luong, Synthesis and Magnetic Properties of Perovskite La1-xSrxMnO3 Nanoparticles, Ieee Trans. Magn. 50 (2014) 3–6. https://doi.org/Artn 2503104 10.1109/Tmag.2014.2307834.
[11] J. He, J. Sunarso, Y. Zhu, Y. Zhong, J. Miao, W. Zhou, Z. Shao, High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection, Sensors Actuators, B Chem. 244 (2017) 482–491. https://doi.org/10.1016/j.snb.2017.01.012.
[12] T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, Enhanced photoluminescence and Raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass, PLoS One. 10 (2015) 1–18. https://doi.org/10.1371/journal.pone.0121756.
[13] T.T. Ha, T. Thi, T. Anh, P.T. Linh, P.T. Huong, P.N. Hai, N.H. Nam, B.T. Cong, S.C. Doanh, N.Q. Hoa, D. Van, L.V. Bau, H.K. Hieu, D.Q. Khoa, N.V. Tuyen, Pulsed electron deposition of LaMnO3 thin films with target made of LaMnO3 nano-powder synthesized by self combustion method, in: Proc. IWNA 2017, 08-11 Novemb. 2017, Phan Thiet, Vietnam, Phan Thiet, 2017: pp. 203–206.
[14] N.V.T. Phi Thi Huong, Pham Thuy Linh, Tran Thi Uyen, Nguyen Hoang Nam, Tran Thi Ha, Ho Khac Hieu, Preparation of Sr doped LaMnO3 nanoparticles by microwave combustion method, DTU J. Sci. Technol. 5 (2018) 74–79.
[15] S.I. Patil, M.S. Sahasrabudhe, S.N. Sadakale, P.R. Sagdeo, R.N. Bathe, K.P. Adhi, S.K. Date, S.M. Bhagat, Phase separation scenario in Ba doped LaMnO3, Phys. Status Solidi C Conf. 1 (2004) 3623–3627. https://doi.org/10.1002/pssc.200405518.
[16] A.L. Gavin, G.W. Watson, Defects in orthorhombic LaMnO3-ionic: Versus electronic compensation, Phys. Chem. Chem. Phys. 20 (2018) 19257–19267. https://doi.org/10.1039/c8cp02763c.
[17] S.M. Ramay, A. Mahmood, S. Atiq, A.N. Alhazaa, Study of divalent elements (Mg, Sr and Ba)-doped LaMnO3 nano-manganites, Int. J. Mod. Phys. B. 30 (2016) 1–9. https://doi.org/10.1142/S021797921650020X.
[18] R. Dhama, C. Nayek, C. Thirmal, P. Murugavel, Enhanced magnetic properties in low doped La1-xBaxMnO3+δ (x=0, 0.1 and 0.2) nanoparticles, J. Magn. Magn. Mater. 364 (2014) 125–128. https://doi.org/10.1016/j.jmmm.2014.04.010.
[19] N. Ahmed, S. Khan, A.A. Khan, A.G. Nabi, H. Ahmed, Z. ur Rehman, M.H. Nasim, Synthesis, structural, electronic, and magnetic properties of cubic perovskite La1-xBaxMnO3 (0.125 ≤ x ≤ 0.875) for spintronic devices, J. Supercond. Nov. Magn. 31 (2018) 4079–4089. https://doi.org/10.1007/s10948-018-4691-y.
[20] M.S.-N. Maryam Shaterian, Morteza Enhessari, Davarkhah Rabbani, Morteza Asghari, Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles, Appl. Surf. Sci. 318 (2014) 213–217. https://doi.org/10.1080/10934529.2013.824789.