Tran Van Quang

Main Article Content

Abstract

Bismuth telluride and its related compounds are the state-of-the-art thermoelectric materials operating at room temperature. Bismuth telluride with Pb substituted, PbBi4Te7, has been found to be a new quasi-binary compound with an impressive high power factor. In this work, in the framework of density functional theory, we study the electronic thermal conductivity of the compound by employing the solution of Boltzmann Transport Equation in a constant relaxation-time approximation. The results show that the electronic thermal conductivity drastically increases with the increase of temperature and carrier concentration which have a detrimental effect on the thermoelectric performance. At a particular temperature, the competition between the thermal conductivity, the Seebeck coefficient and the electrical conductivity limits the thermoelectric figure of merit, ZT. The maximum ZT value of about 0.47 occurs at 520 K and at the carrier concentration of 5.0×1019cm-3 for n-type doping. This suggests that to maximize the thermoelectric performance of the compound, the carrier concentration must be carefully controlled and optimized whereas the best operating temperature is around 500 K.

Keywords: Electronic thermal conductivity, thermoelectric materials, PbBi4Te7, first-principles calculation.

References

[1] T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, Rev. Mod. Phys. 86 (2014) 669–716. https://doi.org/10.1103/RevModPhys.86.669.
[2] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105–114. https://doi.org/10.1038/nmat2090.
[3] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin- film thermoelectric devices with high room-temperature figures of merit, Nature. 413 (2001) 597–602. https://doi.org/10.1038/35098012.
[4] A. Bulusu, D.G. Walker, Review of electronic transport models for thermoelectric materials, Superlattices Microstruct. 44 (2008) 1–36. https://doi.org/10.1016/j.spmi.2008.02.008.
[5] T. Van Quang, M. Kim, Role of O and Se defects in the thermoelectric properties of bismuth oxide selenide, J. Appl. Phys. 120 (2016) 195105. https://doi.org/10.1063/1.4967989.
[6] C. Gayner, K.K. Kar, Recent advances in thermoelectric materials, Prog. Mater. Sci. 83 (2016) 330–382. https://doi.org/10.1016/j.pmatsci.2016.07.002.
[7] T. Van Quang, M. Kim, The metal-insulator phase transition in the strained GdBiTe3, J. Appl. Phys. 113 (2013) 17A934. https://doi.org/10.1063/1.4795743.
[8] T. Van Quang, M. Kim, Effect on the Electronic, Magnetic and Thermoelectric Properties of by the Cerium Substitution, IEEE Trans. Magn. 50 (2014) 1000904. https://doi.org/10.1109/TMAG.2013.2279854.
[9] K. Hoang, S.D. Mahanti, M.G. Kanatzidis, Impurity clustering and impurity-induced bands in PbTe-, SnTe-, and GeTe-based bulk thermoelectrics, Phys. Rev. B. 81 (2010) 115106. https://doi.org/10.1103/PhysRevB.81.115106.
[10] M.K. Zhitinskaya, S.A. Nemov, A.A. Muhtarova, L.E. Shelimova, T.E. Svechnikova, P.P. Konstantinov, Influence of impurities on the thermoelectric properties of layered anisotropic PbBi4Te7 compound: Experiment and calculations, Semiconductors. 44 (2010) 729–733. https://doi.org/Doi 10.1134/S1063782610060072.
[11] T. Van Quang, K. Miyoung, Electronic Structures and Thermoelectric Properties of Layered Chalcogenide PbBi4Te7 from First Principles, J. Korean Phys. Soc. 68 (2016) 393–397. https://doi.org/10.3938/jkps.68.393.
[12] L. Zhang, D.J. Singh, Electronic structure and thermoelectric properties: PbBi2Te4 and related intergrowth compounds, Phys. Rev. B. 81 (2010) 245119. https://doi.org/10.1103/PhysRevB.81.245119.
[13] V.L. Kuznetsov, L.A. Kuznetsova, D.M. Rowe, Electrical transport properties of SnBi4Te7 and PbBi4Te7 with different deviations from stoichiometry, J. Phys. D. Appl. Phys. 34 (2001) 700–703. https://doi.org/10.1088/0022-3727/34/5/306.
[14] L.E. Shelimova, T.E. Svechnikova, P.P. Konstantinov, O.G. Karpinskii, E.S. Avilov, M. a. Kretova, V.S. Zemskov, Anisotropic thermoelectric properties of the layered compounds PbSb2Te4 and PbBi4Te7, Inorg. Mater. 43 (2007) 125–131. https://doi.org/10.1134/S0020168507020057.
[15] M.K. Zhitinskaya, S.A. Nemov, N.M. Blagih, L.E. Shelimova, T.E. Svechnikova, Transport phenomena in the anisotropic layered compounds MeBi4Te7 (Me = Ge, Pb, Sn), Semiconductors. 46 (2012) 1256–1262. https://doi.org/10.1134/S1063782612100211.
[16] T. Van Quang, Optimal Carrier Concentration for High Thermoelectric Performance of Lead Substituted Bismuth Telluride in p-Type Doping, Commun. Phys. 28 (2018) 169. https://doi.org/10.15625/0868-3166/28/2/11800.
[17] L.E. Shelimova, O.G. Karpinskii, P.P. Konstantinov, E.S. Avilov, M.A. Kretova, V.S. Zemskov, Crystal Structures and Thermoelectric Properties of Layered Compounds in the ATe–Bi 2 Te 3 (A = Ge, Sn, Pb) Systems, Inorg. Mater. 40 (2004) 451–460. https://doi.org/10.1023/B:INMA.0000027590.43038.a8.
[18] L.E. Shelimova, O.G. Karpinskii, P.P. Konstantinov, M.A. Kretova, E.S. Avilov, V.S. Zemskov, Thermoelectric properties of the layered compound GeBi 4Te 7 doped with copper, Inorg. Mater. 38 (2002) 790–794. https://doi.org/10.1023/A:1019722726551.
[19] V.S. Zemskov, L.E. Shelimova, P.P. Konstantinov, E.S. Avilov, M. a. Kretova, I.Y. Nikhezina, Thermoelectric materials based on layered chalcogenides of bismuth and lead, Inorg. Mater. Appl. Res. 3 (2012) 61–68. https://doi.org/10.1134/S2075113312010133.
[20] P.P. Konstantinov, L.E. Shelimova, E.S. Avilov, M.A. Kretova, J.-P. Fleurial, Transport Phenomena in Mixed Layered Tetradymite-like Compounds in the GeTe–Bi2Te3 System, J. Solid State Chem. 146 (1999) 305–312. https://doi.org/10.1006/jssc.1999.8340.
[21] F.N. Guseinov, M.B. Babanly, V.P. Zlomanov, Y.A. Yusibov, Phase equilibria in the Tl2Te-PbTe-Bi2Te3 system, Russ. J. Inorg. Chem. 57 (2012) 1387–1392. https://doi.org/10.1134/S0036023612100063.
[22] M.B. Babanly, A. V. Shevel’kov, F.N. Guseinov, D.M. Babanly, PbTe-Bi2Te3-Te system studied by EMF measurements, Inorg. Mater. 47 (2011) 712–716. https://doi.org/10.1134/S002016851107003X.
[23] I.I. Petrov, R.M. Imamov, I, Sov. Phys. Crystallogr. 14 (1969) 699.
[24] Y. Imai, A. Watanabe, Electronic structures of PbBi4Te7 and GeBi4Te7 calculated by a first-principle pseudopotential method, Intermetallics. 11 (2003) 451–458. https://doi.org/10.1016/S0966-9795(03)00019-0.
[25] E. Wimmer, H. Krakauer, M. Weinert, A.J. Freeman, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule, Phys. Rev. B. 24 (1981) 864–875. https://doi.org/10.1103/PhysRevB.24.864.
[26] G.D. Mahan, J.O. Sofo, The best thermoelectric., Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 7436–7439. https://doi.org/10.1073/pnas.93.15.7436.
[27] T. Quang, H. Lim, M. Kim, Temperature and carrier-concentration dependences of the thermoelectric properties of bismuth selenide dioxide compounds, J. Korean Phys. Soc. 61 (2012) 1728–1731. https://doi.org/10.3938/jkps.61.1728.
[28] M.S. Park, J.H. Song, J.E. Medvedeva, M. Kim, I.G. Kim, A.J. Freeman, Electronic structure and volume effect on thermoelectric transport in p -type Bi and Sb tellurides, Phys. Rev. B. 81 (2010) 155211. https://doi.org/10.1103/PhysRevB.81.155211.
[29] T. Thonhauser, T.J. Scheidemantel, J.O. Sofo, Improved thermoelectric devices using bismuth alloys, Appl. Phys. Lett. 85 (2004) 588–590. https://doi.org/10.1063/1.1775286.
[30] G. V. Chester, A. Thellung, The Law of Wiedemann and Franz, Proc. Phys. Soc. 77 (1961) 1005–1013. https://doi.org/10.1088/0370-1328/77/5/309.