Structural Simulation of Mg2SiO4 under Compression
Main Article Content
Abstract
The microstructure in Mg2SiO4 glass under high compression is studied by molecular dynamic method. This work revealed the correlation between pair radial distribution functions (PRDF) of Si-Si pair and bond angle distribution (BAD) of Si-O-Si and focus on clarifying the split peak of Si-Si PRDF. Moreover, visualizing the bonds of Si-Si at different pressures show changing of Si-Si bonds with pressure. In particularly, as increasing pressure, it forms corner-sharing, edge-sharing and face-sharing bond between SiOx coordination units results in the first peak splitting of Si-Si PRDF at high pressure. The results of Si-Si’s PRDF have also been analyzed and explained in detail.
Keywords:
Molecular dynamic simulation, mg2sio4, sio2, hight pressure, PRDF.
References
O. Glasses, Related content Densification of MgSiO 3 glass with pressure and temperature, 2010.
[2] D.B. G, B. B. K, L. S, First-principles molecular dynamics simulations of MgSiO 3 glass : Structure , density, and elasticity at high pressure 99 (2014) 1304–1314,.
[3] R.M. Bolis, G. Morard, T. Vinci, A. Ravasio, E. Bambrink, M. Guarguaglini, Decaying shock studies of phase transitions in MgO-SiO 2 systems : implications for the Super- Earths interiors s, 2016.
[4] O. Adjaoud, G. Steinle-neumann, and S. Jahn, “Mg 2 SiO 4 liquid under high pressure from molecular dynamics,” Chem. Geol. 256 (3–4) (2008) 184–191.
[5] D. Der Naturwissenschaften, Mantle-Melting at High Pressure - Experimental Constraints on Magma Ocean Differentiation, 2005.
[6] J.T.K. Wan, T.S. Duffy, S. Scandolo, R. Car, First principles study of density, viscosity, and diffusion coefficients of liquid MgSiO 3 at conditions of the Earth’s deep mantle (2005) 1–6.
[7] S. Kohara et al., Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses, Proc. Natl. Acad. Sci. U. S. A. 108, (36) (2011)14780–14785.
[8] C.J. Benmore et al., High pressure x-ray diffraction measurements on Mg2SiO 4 glass, J. Non. Cryst. Solids 357 (14) (2011) 2632–2636.
[9] M.C. Wilding, C.J. Benmore, J.K.R. Weber, In situ diffraction studies of magnesium silicate liquids, J. Mater. Sci., 43(14) (2008) 4707–4713.
[10] M. Guignard, L. Cormier, Environments of Mg and Al in MgO-Al2O3-SiO2 glasses: A study coupling neutron and X-ray diffraction and Reverse Monte Carlo modeling, Chem. Geol. 256 (3–4) (2008) 111–118.
[11] C.C. Lin, S.F. Chen, L. gun Liu, C.C. Li, Anionic structure and elasticity of Na2O-MgO-SiO2 glasses, J. Non. Cryst. Solids 353 (4) (2007) 413–425.
[12] P. Zhang, P.J. Grandinetti, J.F. Stebbins, Anionic species determination in CaSiO3 glass using two-dimensional 29Si NMR, J. Phys. Chem. B. 101 (20) (1997) 4004–4008.
[13] K.L. Sung et al., X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered MgSiO3 melt in Earth’s mantle, Proc. Natl. Acad. Sci. U. S. A.,105 (23) (2008) 7925–7929.
[14] Y. Kono et al., Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6, Proc. Natl. Acad. Sci. U. S. A.113 (13) (2016) 3436–3441.
[15] J.D. Kubicki, A.C. Lasaga, Molecular dynamics simulations of pressure and temperature effects on MgSiO3 and Mg2SiO4 melts and glasses, Phys. Chem. Miner. 17 (8) (1991) 661–673.
[16] K. Shimoda, M. Okuno, Molecular dynamics study of CaSiO3-MgSiO3 glasses under high pressure, J. Phys. Condens. Matter 18 (28) (2006) 6531–6544.
[17] A. Zeidler et al., Structure of liquid and glassy ZnCl2, Phys. Rev. B - Condens. Matter Mater. Phys.,82 (10) (2010) 1–17.
[18] F.J. Spera, M.S. Ghiorso, D. Nevins, Structure, thermodynamic and transport properties of liquid MgSiO3: Comparison of molecular models and laboratory results, Geochim. Cosmochim. Acta 75 (5) (2011) 1272–1296.
[19] D. Nevins, F.J. Spera, M.S. Ghiorso, Shear viscosity and diffusion in liquid MgSiO3: Transport properties and implications for terrestrial planet magma oceans, Am. Mineral., 94 (7) (2009) 975–980.
[20] L.T. San et al., Structural organization, micro-phase separation and polyamorphism of liquid MgSiO 3 under compression, 2016.
[21] S.J. Gaudio, S. Sen, C.E. Lesher, Pressure-induced structural changes and densification of vitreous MgSiO3, Geochim. Cosmochim. Acta 72 (4) (2008) 1222–1230.
[22] D.B. Ghosh, B.B. Karki, First principles simulations of the stability and structure of grain boundaries in Mg 2 SiO 4 forsterite, (2014) 163–171.
[23] A. Zeidler et al., Structure of the network glass-former ZnCl2: From the boiling point to the glass, J. Non. Cryst. Solids 407 (2015) 235–245.
[24] M.C. Wilding, C.J. Benmore, J.A. Tangeman, S. Sampath, Evidence of different structures in magnesium silicate liquids: Coordination changes in forsterite- to enstatite-composition glasses,” Chem. Geol., 213 (1–3) (2004) 281–291.
[2] D.B. G, B. B. K, L. S, First-principles molecular dynamics simulations of MgSiO 3 glass : Structure , density, and elasticity at high pressure 99 (2014) 1304–1314,.
[3] R.M. Bolis, G. Morard, T. Vinci, A. Ravasio, E. Bambrink, M. Guarguaglini, Decaying shock studies of phase transitions in MgO-SiO 2 systems : implications for the Super- Earths interiors s, 2016.
[4] O. Adjaoud, G. Steinle-neumann, and S. Jahn, “Mg 2 SiO 4 liquid under high pressure from molecular dynamics,” Chem. Geol. 256 (3–4) (2008) 184–191.
[5] D. Der Naturwissenschaften, Mantle-Melting at High Pressure - Experimental Constraints on Magma Ocean Differentiation, 2005.
[6] J.T.K. Wan, T.S. Duffy, S. Scandolo, R. Car, First principles study of density, viscosity, and diffusion coefficients of liquid MgSiO 3 at conditions of the Earth’s deep mantle (2005) 1–6.
[7] S. Kohara et al., Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses, Proc. Natl. Acad. Sci. U. S. A. 108, (36) (2011)14780–14785.
[8] C.J. Benmore et al., High pressure x-ray diffraction measurements on Mg2SiO 4 glass, J. Non. Cryst. Solids 357 (14) (2011) 2632–2636.
[9] M.C. Wilding, C.J. Benmore, J.K.R. Weber, In situ diffraction studies of magnesium silicate liquids, J. Mater. Sci., 43(14) (2008) 4707–4713.
[10] M. Guignard, L. Cormier, Environments of Mg and Al in MgO-Al2O3-SiO2 glasses: A study coupling neutron and X-ray diffraction and Reverse Monte Carlo modeling, Chem. Geol. 256 (3–4) (2008) 111–118.
[11] C.C. Lin, S.F. Chen, L. gun Liu, C.C. Li, Anionic structure and elasticity of Na2O-MgO-SiO2 glasses, J. Non. Cryst. Solids 353 (4) (2007) 413–425.
[12] P. Zhang, P.J. Grandinetti, J.F. Stebbins, Anionic species determination in CaSiO3 glass using two-dimensional 29Si NMR, J. Phys. Chem. B. 101 (20) (1997) 4004–4008.
[13] K.L. Sung et al., X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered MgSiO3 melt in Earth’s mantle, Proc. Natl. Acad. Sci. U. S. A.,105 (23) (2008) 7925–7929.
[14] Y. Kono et al., Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6, Proc. Natl. Acad. Sci. U. S. A.113 (13) (2016) 3436–3441.
[15] J.D. Kubicki, A.C. Lasaga, Molecular dynamics simulations of pressure and temperature effects on MgSiO3 and Mg2SiO4 melts and glasses, Phys. Chem. Miner. 17 (8) (1991) 661–673.
[16] K. Shimoda, M. Okuno, Molecular dynamics study of CaSiO3-MgSiO3 glasses under high pressure, J. Phys. Condens. Matter 18 (28) (2006) 6531–6544.
[17] A. Zeidler et al., Structure of liquid and glassy ZnCl2, Phys. Rev. B - Condens. Matter Mater. Phys.,82 (10) (2010) 1–17.
[18] F.J. Spera, M.S. Ghiorso, D. Nevins, Structure, thermodynamic and transport properties of liquid MgSiO3: Comparison of molecular models and laboratory results, Geochim. Cosmochim. Acta 75 (5) (2011) 1272–1296.
[19] D. Nevins, F.J. Spera, M.S. Ghiorso, Shear viscosity and diffusion in liquid MgSiO3: Transport properties and implications for terrestrial planet magma oceans, Am. Mineral., 94 (7) (2009) 975–980.
[20] L.T. San et al., Structural organization, micro-phase separation and polyamorphism of liquid MgSiO 3 under compression, 2016.
[21] S.J. Gaudio, S. Sen, C.E. Lesher, Pressure-induced structural changes and densification of vitreous MgSiO3, Geochim. Cosmochim. Acta 72 (4) (2008) 1222–1230.
[22] D.B. Ghosh, B.B. Karki, First principles simulations of the stability and structure of grain boundaries in Mg 2 SiO 4 forsterite, (2014) 163–171.
[23] A. Zeidler et al., Structure of the network glass-former ZnCl2: From the boiling point to the glass, J. Non. Cryst. Solids 407 (2015) 235–245.
[24] M.C. Wilding, C.J. Benmore, J.A. Tangeman, S. Sampath, Evidence of different structures in magnesium silicate liquids: Coordination changes in forsterite- to enstatite-composition glasses,” Chem. Geol., 213 (1–3) (2004) 281–291.