Titanate Tubular Loaded Diatom Fabricated by a Facial Hydrothermal Method for Photocatalytic Enhancement under Visible Light Irradiation
Main Article Content
Abstract
In this study, homogeneous titanate tubular (TNT) and diatom/TNT composites (D/TNT) were prepared by a facile hydrothermal method. The crystalline structure and morphology of the synthesised samples were studied by X-ray diffractometry (XRD), Raman spectroscopy, Transmission Electron Microscopy (TEM). Furthermore, the photocatalytic activity for degradation of methylene blue (MB) was investigated under sunlight irradiation. The results showed that the MB degradation by D/TNT was higher than bare TNT. Optical properties of the synthesized materials with enhanced photocatalytic activity could be explained through both UV-vis diffuse absorption and photoluminescence emission measurement. These results indicated that there was bandgap narrowing and longer carrier lifetime in the composite sample.
References
[2] N. Xuan Sang, N. Minh Quan, N. Huu Tho, N. Tri Tuan, T. Thanh Tung, Mechanism of enhanced photocatalytic activity of Cr-doped ZnO nanoparticles revealed by photoluminescence emission and electron spin resonance, Semicond. Sci. Technol. 34 (2018) 025013. https://doi.org/10.1088/1361-6641/aaf820
[3] F. Jiang, S. Zheng, L. An, H. Chen, H. Effect of calcination temperature on the adsorption and photocatalytic activity of hydrothermally synthesized TiO2 nanotubes, Appl. Surf. Sci. 258 (2012) 7188–7194. https://doi.org/10.1016/j.apsusc.2012.04.032
[4] S.X. Nguyen, T. Thanh Tung, P.T. Lan Huong, N.H. Tho, D. Losic, Heterojunction of graphene and titanium dioxide nanotube composites for enhancing photocatalytic activity, J. Phys. D. Appl. Phys. 51 (2018) 265304. https://doi.org/10.1088/1361-6463/aac7ce
[5] N.X. Sang, P.T.L. Huong, T.T.M. Thy, P.T. Dat, V.C. Minh, N.H. Tho, Crystalline deformation and photoluminescence of titanium dioxide nanotubes during in situ hybridization with graphene: An example of the heterogeneous photocatalyst, Superlattices Microstruct. 121 (2018) 9–15. https://doi.org/10.1016/j.spmi.2018.07.020
[6] P. Ferraro, E. De Tommasi, I. Rea, L. De Stefano, P. Dardano, G. Di Caprio, M.A. Ferrara, G. Coppola, M. Ritsch-Marte, S. Grilli, D. Stifter, Optics with diatoms: towards efficient, bioinspired photonic devices at the micro-scale, Optical Methods for Inspection, Characterization, and Imaging of Biomaterials 8792 (2013) 87920. https://doi.org/10.1117/12.2021613
[7] T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, Diatoms as living photonic crystals, Appl. Phys. B Lasers Opt. 78 (2004) 257–260. https://doi.org/10.1007/s00340-004-1419-4
[8] T.T. Nguyen, T.T. Tung, D. Losic, L.T. Lan Anh, L.H. Phuc, X.S. Nguyen, Electromigration with enhanced green emission in the titanium dioxide nanotube/graphene composite, Curr. Appl. Phys. 19 (2019) 1082–1087. https://doi.org/10.1016/j.cap.2019.06.008
[9] E. Van Eynde, Z.Y. Hu, T. Tytgat, S.W. Verbruggen, J. Watté, G. Van Tendeloo, I. Van Driessche, R. Blust, S. Lenaerts, Diatom silica-titania photocatalysts for air purification by bio-accumulation of different titanium sources, Environ. Sci. Nano. 3 (2016) 1052–1061. https://doi.org/10.1039/C6EN00163G
[10] Q. Chen, G.H. Du, S. Zhang, L. Peng, The structure of trititanate nanotubes, Acta Crystallographica Section B Structural Science 58 (2002) 587–593. https://doi.org/10.1107/S0108768102009084
[11] T. Kubo, A. Nakahira, A. Local structure of TiO2-derived nanotubes prepared by the hydrothermal process, J. Phys. Chem. C. 112 (2008) 1658–1662. https://doi.org/10.1021/jp076699d
[12] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2, Dalton Trans. 4 (2003) 3898–3901. https://doi.org/10.1039/B305585J
[13] D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14 (2004) 3370–3377. https://doi.org/10.1039/B406378C
[14] M.Z. Wang, F.X. Liang, B. Nie, L.H. Zeng, L.X. Zheng, P. Lv, Y.Q. Yu, C. Xie, Y.Y. Li, L.B. Luo, TiO2 Nanotube Array/Monolayer Graphene Film Schottky Junction Ultraviolet Light Photodetectors, Part. Part. Syst. Char. 30 (2013) 630–636. https://doi.org/10.1002/ppsc.201300040
[15] L.C. Sim, K.H. Leong, S. Ibrahim, P. Saravanan, Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visiblelight-driven photocatalytic performance, J. Mater. Chem. A 2 (2014) 5315–5322. https://doi.org/10.1039/C3TA14857B
[16] M.S. Aw, S. Simovic, J. Addai-Mensah, D. Losic, Silica microcapsules from diatoms as new carrier for delivery of therapeutics, Nanomedicine 6 (2011) 1159–1173. https://doi.org/10.2217/nnm.11.29
[17] F.D. Hardcastle, Raman Spectroscopy of Titania (TiO2) Nanotubular Water-Splitting Catalysts, Journal of the Arkansas Academy of Science 65 (2011). https://scholarworks.uark.edu/jaas/vol65/iss1/9/
[18] L. Qian, Z.L. Du, S.Y. Yang, Z.S. Jin, S. Raman study of titania nanotube by soft chemical process, J. Mol. Struct. 749 (2005) 103–107. https://doi.org/10.1016/j.molstruc.2005.04.002
[19] S.H. Byeon, S.O. Lee, H. Kim, Structure and Raman Spectra of Layered Titanium Oxides, J. Solid State Chem. 130 (1997) 110–116. https://doi.org/10.1006/jssc.1997.7286
[20] P.C. Sevinc, X. Wang, Y. Wang, D. Zhang, A.J. Meixner, H.P. Lu, Simultaneous spectroscopic and topographic near-field imaging of TiO2 single surface states and interfacial electronic coupling, Nano Lett. 11 (2011) 1490–1494. https://doi.org/10.1021/nl104160n
[21] T K. Thiyagarajan, S. Samuel, S.G. Babu, NiO/C3N4 : hybrid photocatalyst for the enhanced photodegradation of organic pollutant under visible light, Mater. Res. Express 5 (2018) 115503. https://doi.org/10.1088/2053-1591/aadc3e
[22] A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, M. Miki-Yoshida, Optical Band Gap Estimation of ZnO Nanorods, Mater. Res. 19 (2016) 33–38. https://doi.org/10.1590/1980-5373-mr-2015-0612
[23] R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: A comparative study, J. Sol-Gel Sci. Tech. 61 (2012) 1–7. https://doi.org/10.1007/s10971-011-2582-9
[24] Q. Zhang, N. Bao, X. Wang, X. Hu, X. Miao, M. Chaker, D. Ma, Advanced Fabrication of Chemically Bonded Graphene/TiO2 Continuous Fibers with Enhanced Broadband Photocatalytic Properties and Involved Mechanisms Exploration, Sci. Rep. 6 (2016) 1–15. https://doi.org/10.1038/srep38066
[25] C.C. Mercado, F.J. Knorr, J.L. McHale, S.M. Usmani, A.S. Ichimura, L.V. Saraf, Location of hole and electron traps on nanocrystalline anatase TiO2, J. Phys. Chem. C 116 (2012) 10796–10804. https://doi.org/10.1021/jp301680d.