Fabrication, Characterization of SiO2 Nanospheres and SiO2 Opal Photonic Crystals
Main Article Content
Abstract
In this report, we presented the usage of Stober method to fabricate SiO2 nanospheres and self-assembly method to make SiO2 opal photonic crystals based on the fabricated SiO2 nanospheres. An averaged size of SiO2 nanospheres was controlled by varying concentrations of NH4OH and TEOS. Crystal structure and morphology of particles was investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Experimental results showed that SiO2 nanospheres possess amorphous crystal structure with sizes ranged from 150 to 300 nm. The diffuse reflection spectra show the reflection peaks of the SiO2 opal photonic crystals from 410 nm to 520 nm.
Keywords:
SiO2 nanospheres; opal photonic crystals, diffuse reflection spectra.
References
[1] Yuan-Qing Li, YangYang, Chang Q Sun, Shao-Yun Fu, Significant Enhancements in the Fluorescence and Phosphorescence of ZnO Quantum Dots/SiO2Nanocomposites by Calcination, J. Phys. Chem.112 (2008) 17397 -17401. https://doi.org/10.1021/jp8063068.
[2] Ruohu Zhang, Zhuyuan Wang, Chunyuan Song, Jing Yang, Jin Li, Asma Sadaf, Yiping Cui, Surface-Enhanced Fluorescence from Fluorophore-Assembled Monolayers by Using Ag@SiO2 Nanoparticles, ChemPhysChem. 12 (2011) 992 – 998. https://doi.org/10.1002/cphc.201000849.
[3] Sahar Soltan, Hoda Jafari, Shahrara Afshar, Omid Zabihi, Enhancement of photocatalytic degradation of furfural and acetophenone in water m edia using nano-TiO2 -SiO2 deposited on cementitious materials, Water Science & Technology. 74 (2016) 1689 -1697. https://doi.org/10.2166/wst.2016.343.
[4] Ruchi Nandanwar, Purnima Singh, Fozia Z. Haque, Synthesis and Characterization of SiO2 Nanoparticles by Sol-Gel Process and Its Degradation of Methylene Blue,American Chemical Science Journal. 5 (2015) 1-10. https://doi.org/10.9734/ACSJ/2015/10875.
[5] Ji Zhou, C. Q. Sun, K. Pita, Y. L. Lam, Y. Zhou, S. L. Ng, and C. H. Kam, L. T. Li and Z. L. Gui, Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3,Applied Physics letters.78 (2001) 661 - 663. http://dx.doi.org/10.1063/1.1344574.
[6] Wei Wang, Zhipeng Li, Baohua Gu, Zhenyu Zhang, Hongxing Xu, Ag@SiO2 Core - Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering. 3 (2009)3493 -3496. https://doi.org/10.1021/nn9009533.
[7] Ziwei Deng, Min Chen, and Limin Wu, Novel Method to Fabricate SiO2/Ag Composite Spheres and Their Catalytic, Surface-Enhanced Raman Scattering Properties, J. Phys. Chem. 111 (2007) 11692-11698. https://doi.org/10.1021/jp073632h.
[8] Frederich, H., Wen, F., Laverdant, J., de Marcillac, W. D., Schwob, C., Coolen, L., & Maître, A, Determination of the Surface Plasmon Polariton Extraction Efficiency from a Self-Assembled Plasmonic Crystal. Plasmonics. 9 (2014) 917–924. http://doi.org/10.1007/s11468-014-9697-0.
[9] Celine Vion, Piernicola Spinicelli, Laurent Coolen, Catherine Schwob, Jean-Marc Frigerio, Jean-Pierre Hermier, Agnes Maıtre, Controlled modification of single colloidal CdSe/ZnSnanocrystal fluorescence through interactions with a gold surface, Optics Express. 18 (2010) 7440-7455. https://doi.org/10.1364/OE.18.007440.
[10] Nguyen Duy Thien, Nguyen Ngoc Tu, Nguyen Quang Hoa, Sai Cong Doanh, Nguyen Ngoc Long,Le Van Vu, Detection of Carbendazim by SERS Technique Using Silver Nanoparticles Decorated SiO2 Opal Crystal Substrates, Journal of Electronic Materials.48(2019) 8149-8155. http://doi.org/10.1007/s11664-019-07662-0
[11] Werner Stober, Arthur Fink, Ernst Bohn, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, Journal of colloid and interface science.26 (1968) 62—69. https://doi.org/10.1016/0021-9797(68)90272-5.
[12] Van, Helden, A.K., Jansen, J.W., Vrij, A. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents J. Colloid Interf. Sci. 81 (1981) 354-368. https://doi.org/10.1016/0021-9797(81)90417-3.
[13] Kota Sreenivasa Rao, Khalil El-Hami, Tsutomu Kodaki, Kazumi Matsushige, Keisuke Makino, A novel method for synthesis of silica nanoparticles, Journal of Colloid and Interface Science. 289 (2005) 125–131. https://doi.org/10.1016/j.jcis.2005.02.019.
[14] Sang Hyun Park and Younan Xia, Assembly of Mesoscale Particles over Large Areas and ItsApplication in Fabricating Tunable Optical Filters, Langmuir. 15 (1999) 266-273. https://doi.org/10.1021/la980658e.
[2] Ruohu Zhang, Zhuyuan Wang, Chunyuan Song, Jing Yang, Jin Li, Asma Sadaf, Yiping Cui, Surface-Enhanced Fluorescence from Fluorophore-Assembled Monolayers by Using Ag@SiO2 Nanoparticles, ChemPhysChem. 12 (2011) 992 – 998. https://doi.org/10.1002/cphc.201000849.
[3] Sahar Soltan, Hoda Jafari, Shahrara Afshar, Omid Zabihi, Enhancement of photocatalytic degradation of furfural and acetophenone in water m edia using nano-TiO2 -SiO2 deposited on cementitious materials, Water Science & Technology. 74 (2016) 1689 -1697. https://doi.org/10.2166/wst.2016.343.
[4] Ruchi Nandanwar, Purnima Singh, Fozia Z. Haque, Synthesis and Characterization of SiO2 Nanoparticles by Sol-Gel Process and Its Degradation of Methylene Blue,American Chemical Science Journal. 5 (2015) 1-10. https://doi.org/10.9734/ACSJ/2015/10875.
[5] Ji Zhou, C. Q. Sun, K. Pita, Y. L. Lam, Y. Zhou, S. L. Ng, and C. H. Kam, L. T. Li and Z. L. Gui, Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3,Applied Physics letters.78 (2001) 661 - 663. http://dx.doi.org/10.1063/1.1344574.
[6] Wei Wang, Zhipeng Li, Baohua Gu, Zhenyu Zhang, Hongxing Xu, Ag@SiO2 Core - Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering. 3 (2009)3493 -3496. https://doi.org/10.1021/nn9009533.
[7] Ziwei Deng, Min Chen, and Limin Wu, Novel Method to Fabricate SiO2/Ag Composite Spheres and Their Catalytic, Surface-Enhanced Raman Scattering Properties, J. Phys. Chem. 111 (2007) 11692-11698. https://doi.org/10.1021/jp073632h.
[8] Frederich, H., Wen, F., Laverdant, J., de Marcillac, W. D., Schwob, C., Coolen, L., & Maître, A, Determination of the Surface Plasmon Polariton Extraction Efficiency from a Self-Assembled Plasmonic Crystal. Plasmonics. 9 (2014) 917–924. http://doi.org/10.1007/s11468-014-9697-0.
[9] Celine Vion, Piernicola Spinicelli, Laurent Coolen, Catherine Schwob, Jean-Marc Frigerio, Jean-Pierre Hermier, Agnes Maıtre, Controlled modification of single colloidal CdSe/ZnSnanocrystal fluorescence through interactions with a gold surface, Optics Express. 18 (2010) 7440-7455. https://doi.org/10.1364/OE.18.007440.
[10] Nguyen Duy Thien, Nguyen Ngoc Tu, Nguyen Quang Hoa, Sai Cong Doanh, Nguyen Ngoc Long,Le Van Vu, Detection of Carbendazim by SERS Technique Using Silver Nanoparticles Decorated SiO2 Opal Crystal Substrates, Journal of Electronic Materials.48(2019) 8149-8155. http://doi.org/10.1007/s11664-019-07662-0
[11] Werner Stober, Arthur Fink, Ernst Bohn, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, Journal of colloid and interface science.26 (1968) 62—69. https://doi.org/10.1016/0021-9797(68)90272-5.
[12] Van, Helden, A.K., Jansen, J.W., Vrij, A. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents J. Colloid Interf. Sci. 81 (1981) 354-368. https://doi.org/10.1016/0021-9797(81)90417-3.
[13] Kota Sreenivasa Rao, Khalil El-Hami, Tsutomu Kodaki, Kazumi Matsushige, Keisuke Makino, A novel method for synthesis of silica nanoparticles, Journal of Colloid and Interface Science. 289 (2005) 125–131. https://doi.org/10.1016/j.jcis.2005.02.019.
[14] Sang Hyun Park and Younan Xia, Assembly of Mesoscale Particles over Large Areas and ItsApplication in Fabricating Tunable Optical Filters, Langmuir. 15 (1999) 266-273. https://doi.org/10.1021/la980658e.