Nguyen Ngoc Huyen, Nguyen Thi Minh Hong, Pham Duc Thang, Tran Dang Thanh, Ho Thi Anh

Main Article Content


In this study, crystalline nanoparticles CoFe2O4 with a spinel structure were prepared by hydrothermal methods. The magnetic properties of non-calcined cobalt ferrite formed from nanocrystalline powders. The dependence of the particle size and crystalline structure of obtained nanoparticles in the synthesis conditions was examined and characterized using field emission scanning electron microscope (FESEM), and X-ray diffraction analysis (XRD). The XRD analysis revealed a high degree of crystallinity and confirmed the spinel structure of crystalline nanoparticles CoFe2O4. The FESEM image shows the presence of spherical ferrite particles with an average diameter of about 13-18 nm. The results also show that the formation of cobalt ferrite spinel structures was affected by fabrication conditions. Magnetic hysteresis loop data confirm that the magnetic properties of nanoparticles depend on the synthesis conditions. The material prepared by the hydrothermal route and calcination at 150ºC with molar ration Co2+: Fe3+ = 1:2.2  for 2 hours has higher magnetic saturation than that of the surveyed samples.

Keywords: Cobalt ferrite, hydrothermal, magnetic properties.


[1] P. T. Phong, N. X. Phuc, P. H. Nam, N. V. Chien, D. D. Dung, P. H. Linh, Size-Controlled Heating Ability
of CoFe2O4 Nanoparticles Foráhyperthermia Applications, Physica B: Condensed Matter, Vol. 531, 2018, pp. 30-34,
[2] E. R. Kumar, R. Jayaprakash, S. Kumar, Effect of Annealing Temperature on Structural and Magnetic Properties of Manganese Substituted NiFe2O4 Nanoparticles. Materials Science in Semiconductor Processing, Vol. 17, 2014, pp. 173-177,
[3] U. Salazar-Kuri, J. O. Estevez, N. R. Silva-González, U. Pal, Large Magnetostriction in Chemically Fabricated CoFe2O4 Nanoparticles and Its Temperature Dependence, Journal of Magnetism and Magnetic Materials, Vol. 460, 2018, pp. 141-145,
[4] P. A. Vinosha, S. J. Das, Investigation on The Role of pH for The Structural, Optical and Magnetic Properties of Cobalt Ferrite Nanoparticles and Its Effect on The Photo-Fenton Activity, Materials Today: Proceedings, Vol. 5, Iss. 2, Part 3, 2018, pp. 8662-8671,
[5] J. Tong, L. Bo, Z. Li, Z. Lei, C. Xia, Magnetic CoFe2O4 Nanocrystal: A Novel and Efficient Heterogeneous Catalyst for Aerobic Oxidation of Cyclohexane, Journal of Molecular Catalysis A: Chemical, Vol. 307, Iss. 1-2, 2009, pp. 58-63,
[6] K. S. Rao, G. S. V. R. K. Choudary, K. H. Rao, Ch. Sujatha, Structural and Magnetic Properties of Ultrafine CoFe2O4 Nanoparticles, Procedia Materials Science, Vol. 10, 2015, pp. 19-27,
[7] P. C. R. Varma, R. S. Manna, D. Banerjee, M. R. Varma, K. G. Suresh, A. K. Nigam, Magnetic Properties of CoFe2O4 Synthesized by Solid State, Citrate Precursor and Polymerized Complex Methods: A Comparative Study, Journal of Alloys and Compounds, Vol. 453, Issues 1-2, 2008, pp. 298-303,
[8] N. Dong, F. He, J. Xin, Q. Wang, Z. Lei, B. Su, Preparation of CoFe2O4 Magnetic Fiber Nanomaterial Via A Template-Assisted Solvothermal Method, Materials Letters, Vol. 141, 2015, pp. 238-241,
[9] A. Maleki, N. Hosseini, A. Taherizadeh, Synthesis and Characterization of Cobalt Ferrite Nanoparticles Prepared by The Glycine-Nitrate Process, Ceramics International, Vol. 44, Iss. 7, 2018, pp. 8576-8581,
[10] M. A. Gabal, A. A. Al-Juaid, S. El-Rashed, M.A. Hussein, Synthesis and Characterization of Nano-Sized CoFe2O4 Via facile Methods: A Comparative Study, Materials Research Bulletin, Vol. 89, 2017, pp. 68-78,
[11] B. Pourgolmohammad, S. M. Masoudpanah, M.R. Aboutalebi, Synthesis of CoFe2O4 Powders With High Surface Area by Solution Combustion Method: Effect of Fuel Content and Cobalt Precursor, Ceramics International, Vol. 43, Iss. 4, 2017, pp. 3797-3803,
[12] D. R. Babu, K. Venkatesan, Synthesis of Nanophasic CoFe2O4 Powder by Self-Igniting Solution Combustion Method Using Mix Up Fuels, Journal of Crystal Growth, Vol. 468, 2017, pp. 179-184,
[13] S. Kumar, S. Munjal, N. Khare, Metal-Semiconductor Transition and Seebeck Inversion in CoFe2O4 Nanoparticles, Journal of Physics and Chemistry of Solids, Vol. 105, 2017, pp. 86-89,
[14] N. T. T. Loan, N. T. H. Lan, N. T. T. Hang, N. Q. Hai, D. T. T. Anh, V. T. Hau, L. V. Tan, T. V. Tran, CoFe2O4 Nanomaterials: Effect of Annealing Temperature on Characterization, Magnetic, Photocatalytic, and Photo-Fenton Properties, MDPI Journals, Vol. 7, Iss. 12, 2019, pp. 885,
[15] H. Li, H. Z. Wu, G. X. Xiao, Effects of Synthetic Conditions on Particle Size and Magnetic Properties of NiFe2O4, Powder Technology, Vol. 198. Iss. 1, 2010, pp. 157-166,
[16] M. I. Mendelson, Average Grain Size in Polycrystalline Ceramics, Journal of The American Ceramic Society,
Vol. 52, Iss. 8, 1969, pp. 443-446,
[17] T. Meron, Y. Rosenberg, Y. Lereah, G. Markovich, Synthesis and Assembly of High-Quality Cobalt Ferrite Nanocrystals Prepared by A Modified Sol–Gel Technique, Journal of Magnetism and Magnetic Materials,
Vol. 292, 2005, pp. 11-16,
[18] M. P. Gonzalez-Sandoval, A. M. Beesley, M. Miki-Yoshida, L. Fuentes-Cobas, J. A. Matutes-Aquino, Comparative Study of The Microstructural and Magnetic Properties of Spinel Ferrites Obtained by Co-Precipitation, Journal of Alloys and Compounds, Vol. 369, No. 1-2, 2004, pp. 190-194,
[19] S. Calvin, E. E. Carpenter, B. Ravel, V. G. Harris, S. A. Morrison, Multiedge Refinement of Extended X-ray-Absorption Fine Structure of Manganese Zinc Ferrite Nanoparticles, Physical Review B, Vol. 66, Iss. 22, 2002,
pp. 224405,
[20] D. J. Fatemi, V. G. Harris, V. M. Browning, J. P. Kirkland, Processing and Cation Redistribution of MnZn Ferrites Via High-Energy Ball Milling, Journal of Applied Physics, Vol. 83, Iss. 11, 1998, pp. 6867-6869,
[21] L. T. Tam, N. H. Du, L. T. H. Nhung, D. T. N. Hang, P. T. Dung, N. M. Duc, T. T. P. Thu, Characterization
of Cobalt Ferrite CoFe2O4 Nanoparticles Synthesized by Co-Precipitation and Hydrothermal Methods, Journal
of science of Vinh university, Vol. 46, No. 2A, pp. 58-65.
[22] C. Hu, Z. Gao, X. Yang, X, One-pot Low Temperature Synthesis of MFe2O4 (M= Co, Ni, Zn) Superparamagnetic Nanocrystals, Journal of Magnetism and Magnetic Materials, Vol. 320, Iss. 8, 2008, pp. L70-L73,
[23] D. T. T. Nhan, L. L. Son, L. Q. Thang, Study, Synthesis, Characterization, and Application of Chitosan-Ferrite Magnetic Films With Optical Structure (in Vietnamese), Vietnam Journal of Chemistry, Vol. 56, Iss. 3, 2018,
pp. 384-388,
[24] S. H. A. Al Lehyani, R.A. Hassan, A. A. Alharbi, T. Alomayri, H. Alamri, Magnetic Hyperthermia Using Cobalt Ferrite Nanoparticles: The Influence of Particle Size, International Journal of Advancements in Technology, Vol.8, Iss. 4, 2017, pp. 1000196-1000201, .
[25] Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, Synthesis and Magnetic Properties of CoFe2O4 Ferrite Nanoparticles, Journal of Magnetism and Magnetic Materials, Vol. 321, Iss. 9, 2009, pp. 1251-1255,
[26] K. Maaz, A. Mumtaz, S. K. Hasanain, A. Ceylan, Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route, Journal of Magnetism and Magnetic Materials, Vol. 308, Iss. 2, 2007, pp. 289-295,