Le Thi Hong Lien, Nguyen Thi Thao, Vu Ngoc Tuoc

Main Article Content

Abstract

The low-dimensional II-VI group semiconductors have recently emerged as interesting candidate materials for the tailoring of two dimensional (2D) layered structures. Herein, a series of the cage-like nanoporous composed of spheroidal hollow cages (ZnO)12, cutting from the high symmetrical cubic SOD cage-like polymorph as building block, is proposed. We have performed the density-functional tight binding (DFTB+) calculations on the structural, electronic and mechanical properties of this few-layer SOD-cage-block nanosheet series, to investigate the effects of structural modification and sheet thickness on their structural, electronic, and mechanical properties. Optimized geometries, formation energy, phonon spectra, electronic band structure, and elastic tensor calculation has ensured the energetically, dynamical and mechanical stability for the sheets. Furthermore, the theoretically found nanosheet series possess an intrinsic wide direct band gap preserving from wurtzite tetragonal-based bonding. This high symmetry wide bandgap semiconductor nanosheet series and their derivatives are expected to have broad applications in photocatalysis, and biomedicine.

Keywords: Nanosheet, Porous, Density Functional Theory, Tight Binding, ZnO

References

[1] J. Jiang, J. Pi, J. Cai, Review Article: The Advancing of Zinc Oxide Nanoparticles for Biomedical Application, Bioinorg. Chem. Appl. Vol. 2018, (2018) 1062562, https://www.hindawi.com/journals/bca/2018/1062562.
[2] M.A. Borysiewicz, ZnO as a Functional Material, a Review Crystals Vol. 9, (2019) 505, https://doi.org/10.3390/cryst9100505
[3] W.J. Roth, P. Nachtigall, R.E. Morris, P.S. Wheatley, V.R. Seymour, S.E. Ashbrook, P. Chlubná, L. Grajciar, M. Položij, A. Zukal, J. Čejka, A family of zeolites with controlled pore size prepared using a top-down method, Nat. Chem. 5 (2013) 628, https://doi.org/10.1038/nchem.1662.
[4] Y. Tian, Y. Zhang, T. Wang, H.L. Xin, H. Li, O. Gang, Lattice engineering through nanoparticle-DNA frameworks, Nat. Mater. 15 (2016) 654-661, https://doi.org/10.1038/nmat457.
[5] H. Xiong, M. Y. Sfeir, O. Gang, Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices, Nano Lett. 10 (2010) 4456–4462,https://doi.org/10.1021/nl102273c.
[6] A. Kołodziejczak-Radzimska and T. Jesionowski, Zinc Oxide-From Synthesis to Application: A Review, Materials 7 (2014) 2833-2882, https://doi.org/10.3390/ma7042833.
[7] Y. Yong, Song B., He P., Growth Pattern and Electronic Properties of Cluster-Assembled Material Based on Zn12O12: A Density-Functional Study, J. Phys. Chem. C 115 (2011) 6455-6461, https://doi.org/10.1021/jp200780k.
[8] I. Demiroglu, S. Tosoni, F. Illasa, S.T. Bromley, Bandgap engineering through nanoporosity, Nanoscale 6 (2014) 1181-1187, https://doi.org/10.1039/C3NR04028C.
[9] Z. Liu, X. Wang, J. Cai, G. Liu, P. Zhou, K. Wang, H. Zhu, From the ZnO Hollow Cage Clusters to ZnO Nanoporous Phases: A First-Principles Bottom-Up Prediction, J. Phys. Chem. C 117 (2013) 17633-17643, https://doi.org/10.1021/jp405084r.
[10] S.M. Woodley, R. Catlow, Crystal structure prediction from first principles, Nat. Mater. 7 (2008) 937-946, https://doi.org/10.1038/nmat2321.
[11] A.A. Sokol, M.R. Farrow, J. Buckeridge, A.J. Logsdail, C.R.A. Catlow, D.O. Scanlonab, S.M. Woodley, Double bubbles: a new structural motif for enhanced electron–hole separation in solids, Phys. Chem. Chem. Phys. 16 (2014) 21098-21105, https://doi.org/10.1039/C4CP01900H.
[12] S.T. Bromley, M.A. Zwijnenburg, Computational Modeling of Inorganic Nanomaterials 1st Edition, Series: Series in Materials Science and Engineering. CRC Press, May 2, 2016.
[13] J. Carrasco, F. Illas and S.T. Bromley, Ultralow-Density Nanocage-Based Metal-Oxide Polymorphs, Phys. Rev. Lett., Vol. 99 (2007) 235502, https://doi.org/10.1103/PhysRevLett.99.235502.
[14] V.N. Tuoc, T.D. Huan, N.V. Minh, N.T. Thao, Density functional theory based tight binding study on theoretical prediction of low-density nanoporous phases ZnO semiconductor materials, J. of Phys. Conf. Series, Vol. 726 (2016) 012022, https://doi.org/10.1088/1742-6596/726/1/012022/meta.
[15] R. Rasoulkhani, H. Tahmasbi, S. A. Ghasemi, S. Faraji, S. Rostami, and M. Amsler, Energy landscape of ZnO clusters and low-density polymorphs, Phys. Rev. B, Vol. 96 (2017) 064108, https://doi.org/10.1103/PhysRevB.96.064108.
[16] V.N. Tuoc, L.T.H. Lien, T.D. Huan, N.T. Thao, Novel cage-like nanoporous ZnO polymorphs with cubic lattice frameworks, J. of Mater. Today Commun., 24 (2020) 101152, https://doi.org/10.1016/j.mtcomm.2020.10115.
[17] V.N. Tuoc, T.D. Huan, N.T. Thao, L.M. Tuan, Theoretical prediction of low-density hexagonal ZnO hollow structures, J. of Appl. Phys. 120 (2016) 142195,https://doi.org/10.1063/1.4961716.
[18] V.N. Tuoc, T.D. Huan. N.T. Thao, Computational predictions of zinc oxide hollow structures, Physica B, Vol. 532 (2018) 15-19, https://doi.org/10.1016/j.physb.2017.03.00.
[19] S. M. Woodley and R. Catlow, Crystal structure prediction from first principles, Nat. Mater. 7 (2008) 937-946, https://doi.org/10.1038/nmat2321.
[20] A. A. Sokol, M. R. Farrow, J. Buckeridge, A. J. Logsdail, C. R. A. Catlow, D. O. Scanlonab, and S. M. Woodley, Double bubbles: a new structural motif for enhanced electron–hole separation in solids, Phys. Chem. Chem. Phys. 16 (2014) 21098-21105, https://doi.org/10.1039/C4CP01900H.
[21] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, and G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B 58 (1998) 7260, https://doi.org/10.1103/PhysRevB.58.7260.
[22] C. Kohler, G. Seifert, and T. Frauenheim, Density functional based calculations for Fen (n⩽32), Chem. Phys. 309 (2005) 23-31, https://doi.org/10.1016/j.chemphys.2004.03.034.
[23] B. Aradi, B. Hourahine, and Th. Frauenheim, DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method, J. Phys. Chem. A 111 (2007) 5678-5684, https://doi.org/10.1021/jp070186p.
[24] DFTB+ method http://www.dftb-plus.info/ (2020) (accessed 10 August 2020).
[25] V.N. Tuoc, The self-consistent charge density functional tight binding study on wurtzite nanowire, Comput. Mater. Sci. 49 (2010) S161-S169, https://doi.org/10.1016/j.commatsci.2009.12.031.
[26] N.H. Moreira, G. Dolgonos, B. Aradi, A.L. da Rosa, Th. Frauenheim, Toward an Accurate Density-Functional Tight-Binding Description of Zinc-Containing Compounds, J. Chem. Theory Comput. 5 (2009) 605-614, https://doi.org/10.1021/ct800455a.
[27] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50, https://doi.org/10.1016/0927-0256(96)00008-0.
[28] G Kresse, J.J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169.
[29] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865.
[30] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100 (2008) 136406, https://doi.org/10.1103/PhysRevLett.100.136406.
[31] J. Heyd, G.E. Scuseria, and M. M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential J. Chem. Phys. 124 (2006) 219906, https://doi.org/10.1063/1.1564060.
[32] A.Togo, F. Oba, F. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, Vol. 78 (2008) 134106, https://doi.org/10.1103/PhysRevB.78.134106 .
[33] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S Schmidt, N. F Hinsche, M. N Gjerding, D. Torelli, P. M Larsen, A. C Riis-Jensen, The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals, 2D Mater. 6 (2019) 048001, https://doi.org/10.1088/2053-1583/aacfc1.
[34] Mounet, N., Gibertini, M., Schwaller, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nat. Nanotech 13 (2018) 246, https://doi.org/10.1038/s41565-017-0035-5.