Mai Thi Lan, Nguyen Thi Thao

Main Article Content

Abstract

We use the Oganov potentials and period boundary condition to perform molecular dynamics simulation of amorphous and liquid Mg2SiO4 systems under pressures 0 GPa and 40 GPa. We clarify structure of amorphous Mg2SiO4 at 0 and 40 GPa and compared with the one of Mg2SiO4 at liquid state. Especially, the origin of sub-peaks in radial distribution function of O-O, Si-Si and Mg-Mg pairs is explained clearly. The change of radial distribution functions, coordination number and the number of all types of bonds including the corner-, edge- and face-sharing bonds is also discussed in detail in this paper.

Keywords: Molecular dynamics simulation, magnesium silicate, structure.

References

[1] D. B. Ghosh, B. B. Karki, First principles simulations of the stability and structure of grain boundaries in Mg2SiO4 forsterite, Phys Chem Minerals 41 (2014), 163-171. https://doi.org/10.1007/s00269-013-0633-1.
[2] O. Adjaoud, G. Steinle-Neumann and Sandro Jahn, Mg2SiO4 liquid under high pressure from molecular dynamics, Chemical Geology 256 (2008), 185–192. https://doi.org/10.1016/j.chemgeo.2008.06.031.
[3] S. Guan, X. Zhang, Z. P. Liu, Energy landscape and crystal to crystal transition of ternary silicate Mg2SiO4, J. Phys. Chem. C 120 (2016) 25110-25116. https://doi.org/10.1021/acs.jpcc.6b08942
[4] K. Shimoda, Y. Tobu, M. Hatakeyama, T. Nemoto, K. Saito, Structural investigation of Mg local environments in silicate glasses by ultra-high field 25Mg 3QMAS NMR spectroscopy. Am Mineral 92 (2007), 695–698. https://doi.org/10.2138/am.2007.2535.
[5] S. Sen, H. Maekawa, G.N Papatheodorou, Short-range structure of invert glasses along the pseudo-binary join MgSiO3-Mg2SiO4: results from 29Si and 25Mg MAS NMR Spectroscopy, J Phys Chem B 113 (2009),15243–15248. https://doi.org/10.1021/jp9079603.
[6] C. J. Benmore, E. Soignard, M. Guthrie, S. A. Amin, J. K. R. Weber, K. McKiernan,M. C. Wilding, J.L. Yarger, High pressure x-ray diffraction measurements on Mg2SiO4 glass, J. Non-Cryst. Solids 357 (2011), 2632-2636. https://doi.org/10.1016/j.jnoncrysol.2010.12.064.
[7] N. Tomioka, T. Okuchi, A new high-pressure form of Mg2SiO4 highlighting diffusion less phase transitions of olivine, Sci Rep 7(1) (2017), 17351. https://doi.org/10.1038/s41598-017-17698-z.
[8] M. C. Wilding, C. J. Benmore, J. A. Tangeman, S. Sampath, Coordination changes in magnesium silicate glasses, Europhys. Lett. 67 (2004), 212-218. https://doi.org/10.1209/epl/i2003-10286-8.
[9] J. D. Kubicki, A. C. Lasaga, Molecular dynamics simulations of pressure and temperature effects on MgSiO3 and Mg2SiO4 melts and glasses, Phys Chem Miner 17 (1991), 661–673. https://doi.org/10.1007/BF00202236.
[10] J. S. Frank, S. G. Mark, D. Nevins, Structure, thermodynamic and transport properties of liquid MgSiO3: Comparison of molecular models and laboratory results, Geochimica et Cosmochimica Acta 75 (2011), 1272-1296. https://doi.org/10.1016/j.gca.2010.12.004.
[11] P. K. Nico, L. Stixrude, B. K. Bijaya, Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure, Geochimica et Cosmochimica Acta 72 (2008), 1427–1441. https://doi.org/10.1016/j.gca.2007.12.019.
[12] L. T. San, N. V. Hong, T. Iitaka, P. K. Hung, Structural organization, micro-phase separation and polyamorphism of liquid MgSiO3 under compression, Eur. Phys. J. B 89 (2016) 73. https://doi.org/10.1140/epjb/e2016-60740-4.
[13] N. T. Thao, N. T. Trang, T. D. Hinh, L. V. Vinh, Molecular dynamics simualtions of structural and mechanical properties in MgSiO3 glass, Phys. Status Solidi B (2019), 1900215. https://doi.org/10.1002/pssb.201900215.
[14] N. V. Hong, M. T. Lan, P. K. Hung, Structure and dynamics of liquid MgO under high pressure, High Pressure Research 32 (4) (2012), 509-523. https://doi.org/10.1080/08957959.2012.736506.