Minh Nhat Dang, Do Nhat Minh, Le Ngoc Trung, Nguyen Thanh Hai, Le Trong Lu, Le Thi Thanh Tam, Nguyen Tuan Hong, Nguyen Van Thao, Phan Ngoc Minh, Phan Ngoc Hong

Main Article Content

Abstract

We herein introduce a new approach to synthesize MoO2/graphene composites via plasma-enhanced electrochemical exfoliation process. Our samples were prepared by electrifying graphite rods in (NH4)2Mo7O24 solution under a DC voltage of 70V. By controlling the experimental parameters such as the initial ratio of [Mo7O24]2– precursor, the current and time, we can modify the size and the size distribution of MoO2 nanoparticles on graphene sheets. The composites were characterized with Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray Diffraction and Raman Spectroscopy.


 

Keywords: graphene, plasma, electrochemistry, MoO2, molybdenum oxide, composite

References

[1] C. Zhang, P. Zhang, J. Dai, H. Zhang, A. Xie, Y. Shen, Facile synthesis and electrochemical properties of MoO2/reduced graphene oxide hybrid for efficient anode of lithium-ion battery, Ceram. Int. 42 (2016) 3618–3624. https://doi.org/10.1016/j.ceramint.2015.11.026.
[2] A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366–377. https://doi.org/10.1038/nmat1368.
[3] A. Yu, H.W. Park, A. Davies, D.C. Higgins, Z. Chen, X. Xiao, Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO 2 Nanotube as Anode for Lithium Ion Batteries, J. Phys. Chem. Lett. 2 (2011) 1855–1860. https://doi.org/10.1021/jz200836h.
[4] J.-P. Jegal, H.-K. Kim, J.-S. Kim, K.-B. Kim, One-pot synthesis of mixed-valence MoO x on carbon nanotube as an anode material for lithium ion batteries, J. Electroceramics. 31 (2013) 218–223. https://doi.org/10.1007/s10832-013-9821-0.
[5] Y.S. Jung, S. Lee, D. Ahn, A.C. Dillon, S.-H. Lee, Electrochemical reactivity of ball-milled MoO3−y as anode materials for lithium-ion batteries, J. Power Sources. 188 (2009) 286–291. https://doi.org/10.1016/j.jpowsour.2008.11.125.
[6] J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Adv. Mater. 22 (2010) E170–E192. https://doi.org/10.1002/adma.201000717.
[7] N. Thanh Hai, D. Nhat Minh, D. Nhat Minh, N. Dinh Dung, L. Nhu Hai, P. Ngoc Hong, N. Tuan Hong, Hot-filament CVD Growth of Vertically-aligned Carbon Nanotubes on Support Materials for Field Electron Emitters, VNU J. Sci. Math. - Phys. 36 (2020) 98–105. https://doi.org/10.25073/2588-1124/vnumap.4477.
[8] M.N. Dang, M.D. Nguyen, N.K. Hiep, P.N. Hong, I.H. Baek, N.T. Hong, Improved field emission properties of carbon nanostructures by laser surface engineering, Nanomaterials. 10 (2020). https://doi.org/10.3390/nano10101931.
[9] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Lett. 8 (2008) 2277–2282. https://doi.org/10.1021/nl800957b.
[10] Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy. 1 (2012) 107–131. https://doi.org/10.1016/j.nanoen.2011.11.001.
[11] G.H. Jeong, S. Baek, S. Lee, S.W. Kim, Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials, Chem. - An Asian J. 11 (2016) 949–964. https://doi.org/10.1002/asia.201501072.
[12] M.N. Dang, T.D.T. Ung, H.N. Phan, Q.D. Truong, T.H. Bui, M.N. Phan, L.Q. Nguyen, P.D. Tran, A novel method for preparation of molybdenum disulfide/graphene composite, Mater. Lett. 194 (2017) 145–148. https://doi.org/10.1016/j.matlet.2017.02.018.
[13] M.N. Dang, T.H. Nguyen, T. Van Nguyen, T.V. Thu, H. Le, M. Akabori, N. Ito, H.Y. Nguyen, T.L. Le, T.H. Nguyen, V.T. Nguyen, N.H. Phan, One-pot synthesis of manganese oxide/graphene composites via a plasma-enhanced electrochemical exfoliation process for supercapacitors, Nanotechnology. 31 (2020) 345401. https://doi.org/10.1088/1361-6528/ab8fe5.
[14] D.N. Minh, H.P. Duong, L. Hoang, P.D. Nguyen, P.D. Tran, P.N. Hong, Plasma-Assisted Preparation of MoS2/Graphene/MOF Hybrid Materials and Their Electrochemical Behaviours, Mater. Trans. 61 (2020) 1535–1539. https://doi.org/10.2320/matertrans.MT-MN2019003.
[15] S.-S. Chen, X. Qin, Molybdenum oxide-iron oxide/graphene composite as anode materials for lithium ion batteries, J. Solid State Electrochem. 19 (2015) 1867–1874. https://doi.org/10.1007/s10008-015-2846-3.
[16] K. Sasaki, Y. Tokura, T. Sogawa, The Origin of Raman D Band: Bonding and Antibonding Orbitals in Graphene, Crystals. 3 (2013) 120–140. https://doi.org/10.3390/cryst3010120.
[17] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett. 97 (2006) 187401. https://doi.org/10.1103/PhysRevLett.97.187401.
[18] K. Shomalian, M.-M. Bagheri-Mohagheghi, M. Ardyanian, Characterization and study of reduction and sulfurization processing in phase transition from molybdenum oxide (MoO2) to molybdenum disulfide (MoS2) chalcogenide semiconductor nanoparticles prepared by one-stage chemical reduction method, Appl. Phys. A. 123 (2017) 93. https://doi.org/10.1007/s00339-016-0719-y.